Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fesseln für unbekannte Grippeviren

28.04.2010
Forscher aus Freiburg und Berlin lüften Geheimnis um Immunantwort – Veröffentlichung in „Nature“

Bei einer Infektion mit neuen, dem Körper unbekannten Grippeviren kann das menschliche Immunsystem rasch einen angeborenen Schutzmechanismus gegen die Erreger aktivieren. Dabei spielt ein Protein, kurz „Mx“ (Myxovirus-Resistenz) genannt, eine wichtige Rolle.

Es hindert die Viren daran, sich ungehemmt zu vermehren. Wie, das haben Forscher bislang nicht herausfinden können. Jetzt haben Virologen vom Freiburger Institut für Medizinische Mikrobiologie und Hygiene und Strukturbiologen vom Berliner Max-Delbrück-Centrum für Molekulare Medizin (MDC) die Struktur des „Mx“-Proteins zum Teil entschlüsselt. Damit können sie klären, wie das „Mx“-Protein seine antivirale Wirkung entfaltet.

Neue Influenzaviren können ohne Vorwarnung immer wieder vom Tier auf den Menschen überspringen, wie die Erfahrungen mit dem H5N1-Vogelgrippevirus oder jüngst mit dem Schweinegrippevirus belegen. Obwohl der Mensch meist keine Immunität gegen solche Erreger hat, ist sein Körper den Eindringlingen nicht schutzlos ausgeliefert. Er verfügt über eine rasch mobilisierbare Abwehr, die dafür sorgt, dass sich die Influenzaviren nicht ungehemmt vermehren können.

Ein wesentliches Element dieses Schutzes besteht aus einem körpereigenen Protein, das eindringende Viren in der Zelle abfängt und daran hindert, Nachkommen-Viren zu produzieren. Unter normalen Umständen ist dieses Schutzprotein „Mx“ gar nicht in den Zellen vorhanden. Es wird erst kurzfristig nach Bedarf hergestellt, und dann in großen Mengen. Der Befehl zur Herstellung wird durch den natürlichen Botenstoff Interferon vermittelt, der von virusinfizierten Zellen ausgeschieden wird und dem Organismus den Virusbefall ankündigt.

Dieser Interferon-induzierte Schutzmechanismus ist für das Überleben einer Infektion mit Influenzaviren unerlässlich, wie Forscher experimentell dokumentieren konnten. Wie genau das schützende Protein die Virusvermehrung blockiert, war jedoch bisher nur ungenügend verstanden, weil dessen Struktur trotz jahrelanger Anstrengungen von Wissenschaftlerinnen und Wissenschaftlern verschiedener Forschungseinrichtungen nicht aufgeklärt werden konnte.

Den Virologen Prof. Dr. Otto Haller, Alexander von der Malsburg und Prof. Dr. Georg Kochs aus Freiburg ist es in Zusammenarbeit mit den Strukturbiologen Dr. Oliver Daumke, Song Gao, Susann Paeschke und Prof. Dr. Joachim Behlke vom MDC gelungen, strukturelle Einsichten zu gewinnen und daraus Voraussagen zur Wirkungsweise des antiviralen Proteins abzuleiten.

Das als „Mx“ bezeichnete Protein ist eine molekulare Maschine, die ihre volle Kraft erst nach Aneinanderlagerung der Einzelmoleküle zu einem hochmolekularen Verbund entfaltet, wobei sich Ringstrukturen ausbilden. Ein zentrales Element der Ringbildung besteht in der besonderen Faltung eines Teils von „Mx“, der als Stiel bezeichnet wird.

Nach der genauen Struktur dieses Stiels wird seit Jahren gefahndet. Die beiden Forschergruppen entschlüsselten nun erstmals die Stiel-Struktur auf atomarer Ebene. Die jetzt bekannte Struktur erklärt den Aufbau von „Mx“ und erlaubt testbare Voraussagen zur Funktionsweise des antiviralen Moleküls.

Zusammen mit Ergebnissen aus früheren biochemischen Untersuchungen wird jetzt klar, dass „Mx“ mit der Stiel-Struktur eine Art Fußangel bildet, die wichtige Bestandteile des Influenzavirus in der infizierten Zelle fesselt und inaktiviert. Dass es dennoch bei dem Auftreten neuer Grippeviren zu Epidemien oder gar Pandemien kommen kann, hängt mit der Aggressivität und Massivität dieser Erreger zusammen. Die Forscher sind zuversichtlich, mit ihren neuen Erkenntnissen über das schützende „Mx“-Protein die Grundlage für die Entwicklung neuer antiviraler Medikamente gegen die gefährlichen Influenzaviren gelegt zu haben. Sie sind zudem sicher, dass die an „Mx“ gewonnenen Erkenntnisse auch das Verständnis für weitere Mitglieder dieser Proteinfamilie erhöhen.

Veröffentlichung:
Structural basis of oligomerisation in the stalk region of dynamin-like MxA.
Song Gao1,2, Alexander von der Malsburg3, Susann Paeschke1, Joachim Behlke1, Otto Haller3, Georg Kochs3, Oliver Daumke1
Nature
Published online: XX. April 2010, doi: 10.1038/nature08972
1Max-Delbrück-Centrum for Molecular Medicine, Crystallography, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
2Institute for Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, 14195 Berlin, Germany

3Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herderstrasse 11, 79104 Freiburg, Germany

Ein Computermodell des Proteins können Sie sich im Internet herunterladen unter: http://www.mdc-berlin.de/de/index.html

Kontakt:

Prof. Dr. Otto Haller
Universitätsklinikum Freiburg
Institut für Medizinische Mikrobiologie und Hygiene
Abteilung Virologie
Tel.: 0049 (0) 761/203-6534
Fax: 0049 (0) 761/203-6626
E-Mail: otto.haller@uniklinik-freiburg.de
http://www.virologie-freiburg.de
Dr. Oliver Daumke
Max-Delbrück-Centrum für
Molekulare Medizin (MDC) Berlin-Buch
Tel.: 0049 (0) 30/9406-3425
Fax: 0049 (0) 30/9406-3814
E-Mail: oliver.daumke@mdc-berlin.de
http://www.mdc-berlin.de/daumke

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.virologie-freiburg.de
http://www.mdc-berlin.de/daumke
http://www.mdc-berlin.de/de/index.html

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Sicher und gesund arbeiten mit Datenbrillen
13.01.2017 | Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

nachricht Vorhersage entlastet das Gehirn
13.01.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau