Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die fantastische Reise geht weiter!

25.03.2011
Schon bald wird gezielte Pharmakotherapie, die Krebszellen präzise ansteuert, ohne dabei das gesunde umgebende Gewebe den toxischen Arzneimittelnebenwirkungen auszusetzen, kein Onkologen-Traum mehr sein, sondern eine medizinische Realität - dank der Arbeit von Professor Sylvain Martel, Direktor des Nanorobotics Laboratory an der Polytechnique Montréal.

Bekannt als erster Forscher der Welt, der magnetische Partikel durch eine lebende Arterie geleitet hat, verkündet Professor Martel einen spektakulären Durchbruch auf dem Gebiet der Nanomedizin.

Unter Verwendung eines Systems zur magnetischen Kernresonanztomografie hat sein Team erfolgreich Mikrocarrier, beladen mit einer Dosis eines Antikrebsmittels, durch die Blutbahn eines lebenden Hasen genau bis zu einem angepeilten Bereich in der Leber geleitet, wo das Medikament erfolgreich verabreicht wurde. Dieser erstmalige medizinische Erfolg wird bei der Verbesserung der Chemoembolisation einer derzeitigen Behandlung für Leberkrebs, helfen.

Mikrocarrier auf Mission

Die therapeutischen magnetischen Mikrocarrier (TMMCs) wurden von dem Doktoranden Pierre Pouponneau unter der gemeinsamen Leitung von Professor Jean-Christophe Leroux und Professor Martel entwickelt.

Diese winzigen Drug Delivery Partikel, hergestellt aus bioabbaubaren Polymeren mit einer Grösse von 50 Mikrometern im Durchmesser - etwas kleiner als die Breite eines Haares - kapseln eine Dosis eines Arzneistoffes (in diesem Fall, Doxorubicin) sowie magnetische Nanopartikel ein. Die Nanopartikel, die im Grunde winzige Magneten sind, ermöglichen es dem erweiterten Kernresonanztomografen, die Mikrocarrier durch die Blutgefässe zum Zielorgan zu leiten. Während der Experimente wurden die in die Blutlaufbahn injizierten TMMCs durch die Leberarterie zu dem angepeilten Bereich der Leber geleitet, wo das Medikament stufenweise abgegeben wurde. Die Ergebnisse dieser In-Vivo-Experimente wurden kürzlich in dem renommierten Journal Biomaterials veröffentlicht und das Patent zu dieser Technologie wurde gerade in den USA ausgestellt.

Das Nanorobotics Laboratory, das beabsichtigt, neue Plattformen zum medizinischen Eingreifen zu entwickeln, arbeitet eng mit dem interventionellen Radiologen Dr. Gilles Soulez und seinem Team der Imaging Research Platform am Centre hospitalier de l'Université de Montréal Research Centre zusammen, um medizinische Protokolle für die zukünftige Anwendung am Menschen zu entwickeln.

Dr. Martel und sein Team erhalten finanzielle Unterstützung von dem Canadian Institutes of Health Research (CIHR), dem Canada Research Chair (CRC), der Canada Foundation for Innovation (CFI), dem Natural Sciences and Engineering Research Council of Canada (NSERC), dem Fonds québécois de la recherche sur la nature et les technologies (FQRNT) und dem Fonds de la recherche en santé du Québec (FRSQ).

Über Polytechnique Montréal

Gegründet 1873, ist die Polytechnique Montréal eine von Kanadas führenden technischen Universitäten, sowohl in Bezug auf Lehre, als auch auf Forschung. Sie ist ausserdem die grösste technische Universität in Québec nach Anzahl der Studenten sowie nach Umfang ihrer Forschungsaktivitäten. Mit über 37.000 Absolventen hat die Polytechnique Montréal beinahe 30% der derzeitigen Mitglieder des Ordre des ingénieurs du Québec ausgebildet. Die Polytechnique bietet Ausbildung in 14 technischen Schwerpunkten, hat 230 Professoren und über 6.700 Studenten. Sie verfügt über ein jährliches Betriebsbudget von mehr als 100 Millionen US-Dollar und einen Forschungsfonds in Höhe von 70 Millionen Dollar.

Literatur: Pouponneau, P., Leroux, J.-C., Soulez, G., Gaboury, L.
und Martel, S. (2011). Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials. Band 32, Nummer 13, Mai 2011, S. 3481-3486. (DOI: 10.1016/j.biomaterials.2010.12.059)

Fotos von Dr. Martel und Bilder des In-Vivo-Ablaufs, aufgenommen von den Mikrocarriern, auf Anfrage erhältlich.

Nanorobotics Laboratory an der Polytechnique Montréal:
http://www.nano.polymtl.ca/
16.März 2007, Fantastic Voyage: from Science Fiction to Reality?
(Fantastische Reise: Von Science Fiction zur Realität?)
http://www.polymtl.ca/carrefour/en/article.php?no=2502
Quelle: Annie Touchette, Abteilung Kommunikation und Personal Polytechnique Montréal, +1-514-340-4711, App. 4415, oder

+1-514-231-8133

Presseinformation: Andrée Peltier, apeltier@ca.inter.net, PR Andrée Peltier, +1-514-846-0003 - +1-514-944-8689

Pressekontakt:
Quelle: Annie Touchette, Abteilung Kommunikation und PersonalPolytechnique Montréal, +1-514-340-4711, App. 4415, oder
+1-514-231-8133;Presseinformation: Andrée Peltier,
apeltier@ca.inter.net,PR Andrée Peltier, +1-514-846-0003 -
+1-514-944-8689

Annie Touchette | presseportal
Weitere Informationen:
http://www.nano.polymtl.ca/
http://www.polymtl.ca/carrefour/en/article.php?no=2502

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Titandioxid-Nanopartikel können Darmentzündungen verstärken
19.07.2017 | Universität Zürich

nachricht Künftige Therapie gegen Frühgeburten?
19.07.2017 | Universitätsspital Bern

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten