Einblick in die molekulare Fertigungsstraße

Von tödlichen Giften bis zu heilenden Antibiotika: Eine Vielzahl von Substanzen, die sich in Pflanzen, Pilzen, Bakterien und anderen Organismen finden, gehören zur Klasse der Polyketide. Wie stellt die Natur dieses erstaunlich breite Spektrum von Polyketiden her?

Forscher des Braunschweiger Helmholtz-Zentrums für Infektionsforschung (HZI), des Helmholtz-Instituts für Pharmazeutische Forschung Saarland (HIPS) und der Universität des Saarlandes in Saarbrücken sind dem Verständnis dieses Prozesses jetzt einen entscheidenden Schritt näher gekommen: Sie entschlüsselten Struktur und Arbeitsweise eines Enzyms, das einen wichtigen Baustein liefert und ihn für seinen Einbau in das schrittweise wachsende Polyketid-Molekül vorbereitet. Dabei klärten sie erstmals auf, wie dieses Enzym den spezifischen Baustein erkennt, ihn bindet und für seinen Einsatz aktiviert. Die Ergebnisse veröffentlicht das renommierte Wissenschaftsmagazin „Nature Chemical Biology“ in seiner aktuellen Ausgabe. Für die Zukunft erhoffen sich die Forscher, die Polyketid-Synthese in der Zelle „umprogrammieren“ zu können – und so zu neuen Substanzen mit medizinischer Wirkung zu gelangen.

Die Polyketide bilden eine der größten Naturstoffklassen; viele von ihnen wurden bei der Suche nach neuen biologischen Wirkstoffen gefunden und aus Mikroorganismen oder Pflanzen isoliert. Ihre Funktionen sind äußerst vielfältig: Sie dienen als Signalmoleküle, als Farbstoffe und als Verteidigungswaffen gegen Fressfeinde oder Konkurrenten. Das Antibiotikum Erythromycin, die Krebsmedikamente Doxorubicin und Epothilon sowie das Antiparasiten-Mittel Avermectin sind prominente Vertreter dieser vielfältigen Stoffklasse.

So unterschiedlich ihre Struktur und biologische Rolle sein mögen: Die Polyketide in verschiedenen Organismen teilen gemeinsame Wege der Herstellung in der produzierenden Zelle.

Spezielle Enzymkomplexe, sogenannte Polyketid-Synthasen, bilden sie in Mikroorganismen schrittweise durch die Verknüpfung einzelner Bausteine. „Der Zusammenbau von Polyketiden ist reine Fließbandarbeit“, erklärt Professor Rolf Müller, Direktor und Abteilungsleiter am HIPS sowie Professor für Pharmazeutische Biotechnologie an der Universität des Saarlandes. „Man könnte die Polyketid-Synthase mit einer Fertigungsstraße in einer Fabrik vergleichen. Sie erhält ein Bauteil von einer bestimmten Zuliefer-Einheit, das nächste von einer anderen. So wie bei der Produktion eines Autos eine bestimmte maschinelle Einheit nur die Türen bereitstellt, die nächste nur Motorhauben und so weiter. Die Polyketid-Synthase verknüpft dann die Bauteile chemisch miteinander. So entsteht schließlich ein fertiges Polyketid.“

Die Forscher haben sich nun die Zulieferer der einzelnen Bausteine am Beispiel des Bakteriums Streptomyces genauer angesehen. Die Zulieferer sind eine Klasse von Proteinen mit dem komplexen Namen „Crotonyl-CoA-Carboxylase/Reduktase“, kurz CCR. Ihre Aufgabe ist es, die Bausteine für die Synthasen bereit zu stellen. Dabei liefert jede CCR nur einen ganz bestimmten Baustein. „Die Frage war nun: Wie gewährleisten die CCR die erstaunliche Vielfalt von Polyketid-Strukturen?“

Um diese Frage zu beleuchten, analysierten die Forscher jetzt erstmals die biochemische Funktion und die atomare Struktur einer bestimmten CCR. Sie wählten dafür das Enzym 2-Oktenoyl-CoA Synthase, kurz CinF.

„Wir konnten erstmals in atomarer Auflösung sehen, wie CinF sein Substrat bindet“, sagt Dr. Nick Quade, Wissenschaftler in der Abteilung Molekulare Strukturbiologie am HZI. Eine Tasche im Protein ermöglicht es dem Bindungspartner, direkt mit CinF zu wechselwirken. Schließlich verglichen die Forscher am Computer die Struktur der Bindungstasche von CinF mit derjenigen von weiteren CCRs, die andere Substrate bereitstellen. Deren Bindungstasche ist genau an das jeweilige Substrat angepasst, ähnlich dem Schlüssel-Schloss-Prinzip. Die Forscher stellten fest: Je nach der Größe ihrer Bindungstasche sind manche CCRs auf kurzkettige Moleküle als Substrat spezialisiert, andere „fischen“ sich bevorzugt langkettige Bausteine aus der Umgebung und bereiten sie für den Einbau in das Polyketid vor.

Weil Polyketide oft medizinisch interessante Wirkungen haben, erhoffen sich die Wissenschaftler vom Verständnis ihrer Synthese wichtige Hinweise für die Arzneimittelentwicklung. „Wir wollen verstehen, wie CCRs arbeiten und die einzelnen Bausteine bereitstellen“, erklärt Professor Dirk Heinz, Wissenschaftlicher Geschäftsführer des HZI und Koautor der Veröffentlichung. „In Zukunft könnte es so möglich sein, Medikamente maßgeschneidert herzustellen und bestimmte Bausteine gezielt einzubauen oder zu verändern.“

Originalpublikation:

Unusual Carbon Fixation Giving Rise to Diverse Polyketide Extender Units. Nick Quade, Liujie Huo, Shwan Rachid, Dirk W. Heinz, Rolf Müller.
Nature Chemical Biology,
Advanced Online Publication, DOI: 10.1038/NChemBio.734
http://dx.doi.org/dx.10.1038/NChemBio.734
Weitere Informationen:
Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern.
Das Helmholtz-Institut für Pharmazeutische Forschung Saarland:
Das Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) ist eine Außenstelle des Helmholtz- Zentrums für Infektionsforschung (HZI) in Braunschweig und wurde gemeinsam mit der Universität des Saarlandes im Jahr 2009 gegründet. Wo kommen neue nachhaltige Wirkstoffe gegen weit verbreitete Infektionen her, wie kann man diese für die Anwendung am Menschen optimieren und wie werden sie am besten durch den Körper zum Wirkort transportiert? Auf diese Fragen suchen die Forscher am HIPS mit modernsten Methoden der pharmazeutischen Wissenschaften Antworten.

Media Contact

Dr. Andreas Fischer Helmholtz-Zentrum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Druck- und Temperaturmessung im Wälzkontakt

… unter Mischreibung dank innovativem Dünnschicht-Multisensor. Die Messung von Druck und Temperatur spielt eine entscheidende Rolle in verschiedenen technischen Anwendungen von Wälzlagern über Verzahnungen bis hin zu Dichtungen. Vor allem…

Wie Zellen die Kurve kriegen

Die Krümmung einer Oberfläche bestimmt das Bewegungsverhalten von Zellen. Sie bewegen sich bevorzugt entlang von Tälern oder Rillen, während sie Erhebungen meiden. Mit diesen Erkenntnissen unter Beteiligung des Max-Planck-Instituts für…

Herzinsuffizienz: Zwei Jahre mit Herzpflaster

Patient berichtet über Erfahrungen. Weltweit einzigartig: Patient*innen mit Herzschwäche wurde im Rahmen einer Studie der Universitätsmedizin Göttingen (UMG) und des Universitätsklinikums Schleswig-Holstein (UKSH) im Labor gezüchtetes Herzgewebe implantiert. Das sogenannte…

Partner & Förderer