Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebs nach Genpanne

11.12.2007
Charité-Forscher enträtseln Mechanismus des Tumorwachstums

Forscher der Charité - Universitätsmedizin Berlin haben erstmals geklärt, weshalb das Protein Fhit bei vielen Krebserkrankungen eine große Rolle spielt.

"Damit sind neue Therapiestrategien näher gerückt, wie man mit Hilfe dieses Proteins das krebsartige Wachstum von Zellen hemmen könnte", erklärt der Leiter der Studie, Prof. Otmar Huber vom Institut für Labora¬toriumsmedizin und Pathobiochemie am Charité Campus Benjamin Franklin. Die Arbeit seiner Forschergruppe wurde jetzt von der US-Fachzeitschrift Pro¬ceedings of the National Academy of Science veröffentlicht.*

Normalerweise funktioniert das Gen Fhit als Tumorsuppressor. Es unterdrückt also Krebserkrankungen. Schon länger war es als Schwachstelle im Erbgut bekannt. Zellbiologische Untersuchungen brachten ans Licht, dass dieses Gen bei bis zu 60 Prozent der Patienten mit Leberkrebs und ebenso vielen Patienten mit Speiseröh¬rentumoren zerstört ist. Auch bei Lungen-, Darm-, Gebärmutter- und Brustkrebs spielt es häufig eine Rolle. "Das Gen reagiert extrem empfindlich auf krebsauslö¬sende Umweltfaktoren wie Nikotin", sagt Prof. Huber. Mit seiner Arbeitsgruppe an der Charité konnte er jetzt feststellen, weshalb Fhit für den Schutz vor Krebs so wichtig ist.

... mehr zu:
»Gen »Protein »Tumorwachstum

Das Gen Fhit enthält die Erbinformation für das gleichnamige Eiweiß. Dieses Protein ist in der Lage, mit ?-Catenin, einem für den Zellaufbau zentralen Molekül, zusam¬men zu wirken. Fhit steuert ?-Catenin, so dass die Herstellung einer Vielzahl von Proteinen gehemmt wird, die zu unkontrolliertem Zellwachstum führen. "Wenn Fhit nicht mehr funktioniert, entstehen gerade diese Eiweiße in großen Mengen", erklärt Huber. "Dann wachsen die Zellen verstärkt und das führt häufig zu einem Tumor."

Durch Einbringen eines gesunden Fhit-Gens in Krebszellen ist es der Forschergrup¬pe gelungen, die Produktion dieser Proteine zu hemmen und das für Tumorzellen typische unkontrollierte Wachstum zu verringern. Dabei schalten die entarteten Zellen dann ein Programm ein, das sie absterben lässt. "Hier liegt der Hoffnungs¬schimmer", meint Prof. Huber. "Wenn diese Strategie beim Menschen auch funk¬tioniert, könnte man in Zukunft in bestimmten Fällen das Tumorwachstum verhin¬dern oder zumindest hemmen." Doch ein Allheilmittel gegen Krebs sei auch das nicht, warnt er. "Es gibt viele Genmutationen, die zu Tumoren führen können. Fhit ist längst nicht in allen Fällen beteiligt."

*Proc Natl Acad Sci USA, 104(51), 20344-20349, 2007

Kontakt
Prof. Otmar Huber, Institut für Laboratoriumsmedizin und Pathobiochemie, Charité -
Universitätsmedizin Berlin
Tel 030 - 8445 2555
otmar.huber@charite.de

Kerstin Endele | idw
Weitere Informationen:
http://www.charite.de

Weitere Berichte zu: Gen Protein Tumorwachstum

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie