Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnet-Impulse aufs Gehirn: Welche Hirn-Regionen arbeiten zuammen?

07.08.2007
Mit starken Magnet-Impulsen durch den Schädel während der funktionellen Magnetresonanz-Tomographie (fMRT) untersuchen Göttinger Forscher das "Gehirn beim Verarbeiten räumlicher Seh-Eindrücke".

Um das "Gehirn beim Denken" zu beobachten, reicht Wissenschaftlern am Universitätsklinikum Göttingen die funktionelle Magnetresonanz-Tomographie (fMRT) nicht mehr aus. Die Forschergruppe MR-Forschung in der Neurologie und Psychiatrie (Leiter: Dr. Peter Dechent) "schockt" das denkende Gehirn freiwilliger Versuchspersonen mit Magnet-Impulsen durch die Schädeldecke, während die Versuchspersonen in der MRT-Röhre liegen. Die Magnetstimulation stört das Gehirn kurzzeitig "bei der Arbeit", während die Probanden in der MRT-Röhre Bilder ansehen und Knöpfe drücken. Für die Teilnehmer ist das Verfahren unbedenklich und ohne Nebenwirkungen.

Die gut platzierten, kurzen Magnet-Impulse durch den Schädel (transkraniale Magnetstimulation, TMS) unterbrechen kurzzeitig und räumlich begrenzt die Aktivität des betroffenen Gehirn-Bereiches (funktionelle Läsion). Ist die Versuchsperson in der MRT-Röhre gerade dabei, einen Seh-Eindruck zu verarbeiten, kann ein gezielter Magnet-Impuls auf das Sehzentrum die Auswertung der Bild-Information verzögern. Lösen die Versuchspersonen eine Aufgabe langsamer, wird deutlich, dass eine wichtige Hirnregion getroffen wurde. In Versuchsreihen können die Forscher so erfahren, welche Hirn-Regionen in welcher Reihenfolge an welchem Denkprozess aktiv beteiligt sind. Die fMRT-Bilder zeigen zusätzlich, welche weiteren Hirnregionen "zusehen, aber nicht mitarbeiten".

Weltweit nutzen nur drei Labore die Kombination von funktioneller Magnetresonanz-Tomographie und transkranialer Magnetstimulation. "Auch wir hatten enormen Respekt vor den technischen Anforderungen. Die Magnet-Kräfte addieren sich. Wir wussten nicht: bauen wir eine magnetische Kanone?", sagt Dr. Jürgen Baudewig, Leiter des Forschungsprojektes. Baudewig testete das System deshalb zuerst an sich selbst. Es ging gut.

... mehr zu:
»Gehirn »MRT »Magnet-Impuls

Erstmals hat das Team um Dr. Baudewig die fMRT- und die TMS-Methode jetzt in einem Forschungsprojekt kombiniert. Die Ergebnisse des "Uhren-Tests" sind im März 2007 in der Internet-Version der Zeitschrift "Cerebral Cortex" erschienen. Testpersonen in der MRT-Röhre sahen für einen kurzen Moment das Bild einer Uhr. Je nachdem, in welchem Winkel die Uhrzeiger zueinander standen, sollten die Testpersonen einen von zwei Knöpfen drücken. Zusätzlich gaben die Wissenschaftler kurz nach dem Bild einen Magnet-Impuls auf eine Hirnregion, die, beidseitig unter der Schädeldecke, für die räumliche Koordination zuständig ist (parietaler Cortex).

Bei Magnet-Impulsen auf die linke Seite des Schädels waren die Testpersonen genauso schnell am richtigen Knopf wie ohne Impuls. Wurde aber der parietale Cortex auf der rechten Seite "beim Denken gestört", drückten die Textpersonen den richtigen Knopf erst mit kurzer Verzögerung. "Offenbar ist nur der rechte parietale Cortex an der räumlichen Koordinations-Aufgabe beteiligt. Die linke Seite sieht nur zu. Diese Erkenntnis hätten wir mit der funktionellen Magnetresonanz-Tomographie allein nicht gewinnen können", sagt Dr. Baudewig.

Für die Zukunft hoffen die Forscher durch die Kombination von fMRT und TMS auf grundlegende Erkenntnisse über die Funktion des Gehirns. "Interessant ist beispielsweise, warum manche Menschen auf einer Seite ihres Gesichtsfeldes nichts sehen, obwohl Augen, Nervenbahnen und Gehirn intakt scheinen. Mit der fMRT-Technik allein lässt sich das nicht beantworten", sagt Dr. Baudewig. Weiterhin hoffen die Forscher, Ausfälle bestimmter Hirnregionen, die durch Unfälle oder Krankheit entstanden sind, "nachzustellen". Durch "scheinbare Schädigungen" (virtuelle Läsionen) des Gehirns gesunder Versuchspersonen könnte man mit Hilfe der fMRT und TMS-Technik diese Krankheiten simulieren und somit ihre Ursachen und Auswirkungen untersuchen.

Die Forschergruppe MR-Forschung in der Neurologie und Psychiatrie wird gleichermaßen von der Max-Planck-Gesellschaft und von der Universitätsmedizin Göttingen, Georg-August-Universität, gefördert.

WEITERE INFORMATIONEN
Universitätsmedizin Göttingen, Georg-August-Universität und
Max-Planck-Institut für biophysikalische Chemie
Forschergruppe MR-Forschung in der Neurologie und Psychologie
Dr. Jürgen Baudewig, Telefon 0551/39-13131,
E-Mail: jbaudew@gwdg.de

Stefan Weller | idw
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Berichte zu: Gehirn MRT Magnet-Impuls

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops