Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie reagieren Immunzellen bei Gefahr?

25.10.2000


Mit zwei verschiedenen Signalen informieren

die dendritischen Zellen des Immunsystems die T-Zellen über den

Angriff von Bakterien oder Viren. Wie die T-Zellen diese Signale

verarbeiten, wird in Würzburg erforscht. TZR=T-Zell-Rezeptor.

Grafik: Lühder


Wenn dem Körper Gefahr von Krankheitserregern droht, dann tritt seine Abwehr in Aktion. Ist tatsächlich ein Erreger eingedrungen? Um welchen handelt es sich genau? Die Antwort auf diese Fragen wird
letztendlich den T-Zellen des Immunsystems zugespielt. Wie diese dann reagieren, untersuchen Immunbiologen an der Universität Würzburg.

Täglich wird der menschliche Organismus mit einer ganzen Reihe von Krankheitserregern konfrontiert: Bakterien und Viren dringen in ihn ein und versuchen sich zu vermehren. Zur Abwehr solcher Überfälle besitzt der Mensch ein ausgeklügeltes Immunsystem: Zum einen produzieren dessen B-Zellen antibakterielle und antivirale Antikörper, zum anderen töten T-Zellen infizierte Zellen direkt ab.

Wie erfahren die T-Zellen nun, ob ein Krankheitserreger zu bekämpfen ist und um welchen es sich handelt? Die entsprechenden Informationen bekommen sie von den dendritischen Zellen des Immunsystems geliefert: Diese nehmen einige eingedrungene Krankheitserreger in sich auf, verdauen sie und leiten dann passende Signale an die T-Zellen weiter.

Dabei handelt es sich einerseits um ein Signal, das die Identität des Erregers mitteilt. Dadurch wird sichergestellt, dass nur solche T-Zellen aktiviert werden, die den Erreger auch wirklich bekämpfen können. Andererseits, und dies ist laut Dr. Fred Lühder vom Würzburger Institut für Virologie und Immunbiologie nicht weniger bedeutend, wird den T-Zellen ein "Gefahrensignal" übermittelt, das ganz allgemein die Existenz eines Krankheitserregers im Körper anzeigt.

Dr. Lühder untersucht am Mausmodell, auf welcher Ebene innerhalb der T-Zellen diese beiden unterschiedlichen Signale zusammenwirken und ob und in welcher Weise sie sich gegenseitig beeinflussen. Sein Projekt wird vom Bundesforschungsministerium im Rahmen des Würzburger "Interdisziplinären Zentrums für Klinische Forschung" gefördert.

Für seine Arbeit nutzt der Wissenschaftler monoklonale Antikörper, die am Lehrstuhl von Prof. Dr. Thomas Hünig entwickelt wurden. Diese Antikörper können das "Gefahrensignal" am T-Zell-Rezeptor CD28 direkt imitieren - daraufhin werden die T-Zellen zur Teilung und zur Ausbildung ihrer speziellen Abwehrfunktionen angeregt.

Dr. Lühder: "Die Erforschung dieser Signalwege kann später einmal vielleicht zu neuen Therapiestrategien für bestimmte Erkrankungen führen: Entweder in Fällen, bei denen das Gefahrensignal zur falschen Zeit gegeben wird und sich das Immunsystem deshalb auch gegen den eigenen Körper richtet, was zum Beispiel für autoimmunen Diabetes oder Multiple Sklerose zutrifft. Oder aber in Fällen, bei denen das Signal zur richtigen Zeit fehlt und folglich die effektive Eliminierung von gefährlichen Zellen verhindert, beispielsweise bei Krebs."

Weitere Informationen: Dr. Fred Lühder, T (0931) 201-3958, Fax (0931) 201-2243,
 E-Mail: fred.luehder@mail.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Berichte zu: Immunsystem Krankheitserreger Multiple Sklerose T-Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Schwere Infektionen bei Kindern auch in der Schweiz verbreitet
26.07.2017 | Universitätsspital Bern

nachricht Neue statistische Verfahren zur Überprüfung von Arzneimittel-Generika
25.07.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops