Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weniger Ordnung im Gehirn

28.02.2007
Wissenschaftler entdecken zweiten Kommunikationsweg zwischen Neuronen

Neuronen leiten Informationen nicht nur über Synapsen weiter, sondern schütten auch Botenstoffe entlang ihrer Nervenzell-Fortsätze aus. Damit erregen sie benachbarte Zellen, berichten Wissenschaftler der Universität Bonn in der Fachzeitschrift Nature Neuroscience. Die Ergebnisse liefern neue Einblicke in die Arbeitsweise des Gehirns und könnten sogar zur Entwicklung neuer Medikamente beitragen.

Nervenzellen empfangen ihre Signale mit kurzen Zellärmchen, den so genannten Dendriten. Diese leiten die elektrischen Impulse zum Zellkörper, wo sie dann verarbeitet werden. Für die Verteilung des Resultats sind Axome zuständig, lange kabelartige Zellausläufer, in denen die elektrischen Signale solange entlang laufen, bis sie auf das Dendrit-Ärmchen eines anderen Neurons treffen. Da die Synapse für die elektrischen Nervenzellpulse eine unüberwindbare Barriere darstellt, schüttet sie Botenstoffe aus. Diese docken an Rezeptoren anderer Dendriten an und erzeugen so wieder elektrische Impulse.

"Bisher nahm man an, dass nur an Synapsen Neurotransmitter ausgeschüttet werden", sagt Dirk Dietrich von der Universität Bonn im pressetext-Interview. "Das scheint nach unseren Erkenntnissen aber nicht zu stimmen." Die Wissenschaftler untersuchten die so genannte weiße Substanz im Gehirn von Ratten. Dort liegen jene "Kabelschächte", welche die rechte und linke Hirnhälfte miteinander verbinden. Sie bestehen vor allem aus Axonen und Hilfszellen - Dendriten oder Synapsen gibt es dagegen nicht. "Man würde dort also auch keine Botenstoff-Übertragung erwarten", sagt Dietrich.

... mehr zu:
»Axon »Dendrit »Glutamat »Synapse

Sobald allerdings ein elektrischer Impuls durch eines der Axon-Kabel lief, wanderten kleine Bläschen des Botenstoffs Glutamat zur Axon-Membran und entließen dort ihren Inhalt ins Gehirn. Glutamat wird auch bei der Signalweiterleitung an Synapsen ausgeschüttet. Die Forscher konnten sogar nachweisen, dass eine Myelin-produzierende Zellart auf das Glutamat reagiert. Myelin ist eine Art Fettschicht, welche die Axone umhüllt und für eine schnellere Signalweiterleitung sorgt. "Wahrscheinlich orientieren sich noch unreife Isolierzellen mit Hilfe des Glutamats, um Axone zu finden und sie mit einer Myelinschicht zu umhüllen", sagt Dietrich.

Treten die Axone in die graue Gehirnsubstanz ein, treffen sie dort auf ihre Empfänger-Dendriten. An den Synapsen geben sie dort die Informationen an die Empfängerzelle weiter. "Wir halten es allerdings für wahrscheinlich, dass die Axone auch außerhalb von Synapsen auf ihrem Weg durch die graue Substanz Glutamat freisetzen", sagt Dietrich. "Hier liegen Nervenzellen dicht an dicht. Das Axon könnte also nicht nur den eigentlichen Empfänger, sondern auch noch zahlreiche weitere Nervenzellen erregen." Dies widerspricht einer in der Wissenschaft lang vertretenen These. Demnach kommunizieren Nervenzellen nur mit jenen Neuronen, mit denen sie über Synapsen verbunden sind. Trifft die These der Bonner Forscher zu, müsste diese seit 1897 bestehende Lehrmeinung revidiert werden.

Christoph Marty | pressetext.deutschland
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Berichte zu: Axon Dendrit Glutamat Synapse

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen