Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hohe Trefferquote bei Wirkstoffsuche

08.02.2002


"Domänenkonzept" des Dortmunder Max-Planck-Instituts für molekulare Physiologie ermöglicht effizientere Suche nach medizinischen Wirkstoffen

Ein neues Konzept für eine effizientere Wirkstoffsuche haben Wissenschaftler unter Leitung von Prof. Herbert Waldmann am Dortmunder Max-Planck-Institut für molekulare Physiologie entwickelt. Das so genannte "Domänenkonzept" soll zum Aufbau von Substanzbibliotheken führen, in denen die Trefferquote für medizinisch relevante Wirkstoffe entscheidend erhöht ist. Grundlage für dieses Konzept sind strukturell konservierte, genetisch aber mobile Proteindomänen und die dazu passenden, in der Evolution selektionierten Naturstoffe. Um ihre Annahmen zu belegen, haben die Forscher jetzt mehrere Studien in der international führenden Fachzeitschrift "Angewandte Chemie" veröffentlicht (u.a. Angew. Chem. Int. Ed. 2002, 41, 307-311).

Nachdem das menschliche Genom vollständig entziffert worden ist, begeben sich die Forscher weltweit auf die Suche nach jenen Genen, deren Sequenzen Ähnlichkeit mit denen so genannter "Erfolgsmoleküle" haben. Als "Erfolgsmoleküle" gelten dabei solche Proteine die Angriffspunkte von medizinischen Wirkstoffen, also Medikamenten sind. Versteckt im Genom schlummert eine Vielzahl neuer potentieller Angriffspunkte für medizinische Therapien. Doch wie findet man rasch und effizient den richtigen Wirkstoffkandidaten? Das Ganze gleicht der berühmten Suche nach der Stecknadel im Heuhaufen: Für jeden molekularen Angriffspunkt müssen derzeit etwa 10.000 Verbindungen hergestellt werden, um schließlich einen Treffer zu landen. Die Forscher vom Max-Planck-Institut für molekulare Physiologie in Dortmund wollen diesen Suchprozess mit Hilfe der Kombinatorischen Chemie in der Evolution selektionierter und damit biologisch relevanter Naturstoffe optimieren.

Bisher werden die Zielmoleküle zunächst einmal gedanklich in einzelne Bausteine zerlegt. Bei der realen chemischen Synthese werden diese dann breit variiert und so miteinander verknüpft dass möglichst alle Kombinationsmöglichkeiten ausgeschöpft werden. Auf diese Weise lassen sich so genannte "Substanzbibliotheken" mit Tausenden bis zu Hunderttausenden und in manchen Fällen sogar bis zu Millionen von chemischen Wirkstoffen aufbauen. Hauptkriterien für den Entwurf der Bibliotheken und die Planung der Synthese waren bisher die chemische Machbarkeit, die Verfügbarkeit geeigneter Bausteine sowie robuster und zuverlässiger Synthesemethoden, die auch bei viel tausendfacher Anwendung kaum versagen. Doch allein das intensive Kombinieren der chemischen Bausteine in einer Art "Zahlenspiel" löst das Kernproblem noch nicht: Nur allzu oft sind die Trefferquoten in den nachfolgenden biologischen Tests dieser Wirkstoffkandidaten enttäuschend niedrig. Bei der Suche kommt es also darauf an, nicht einfach möglichst viele Substanzen herzustellen, sondern vor allem eine genügend große Anzahl der "richtigen", d.h. der für das jeweilige biologische Zielsystem relevanten Wirkstoffe zu gewinnen.

"Abb. 1: Modularer Aufbau von Multidomänen-Proteinen" "Grafik: MPI für Molekulare Physiologie/Schulte/Herter"

Herbert Waldmann und seine Mitarbeiter am Max-Planck-Institut für Molekulare Physiologie haben ein neues Konzept entwickelt, das die Effizienz bei der Identifizierung der "richtigen" Substanztypen und damit neuer Wirkstoffkandidaten deutlich steigern könnte. Grundlage dieses Konzepts ist die Erkenntnis, dass bereits die Natur die Angriffspunkte für die Wirkstoffe, also die Proteine, modular aufbaut: Proteine bestehen nämlich aus so genannten Proteindomänen, die strukturell oft konserviert, genetisch aber mobil sind und die im Laufe der Evolution immer wieder eingesetzt werden: Um neue funktionstragende Proteine zusammenzustellen, kann quasi auf "Formteile" aus einem Baukasten zurückgegriffen werden (Abb. 1). Und so findet man innerhalb einer Spezies, aber auch in verschiedenen Arten, viele Proteine, die, obwohl sie unterschiedliche Funktionen haben, oft sehr ähnliche Domänen besitzen. Bei aller Ähnlichkeit sind ihre Unterschiede allerdings immer noch so groß, dass nur bestimmte Bindungspartner, die Forscher sprechen von Liganden, selektiv an sie anbinden können. Letzteres wiederum ist eine Grundvoraussetzung für die Entwicklung von medizinischen Wirkstoffen.

Darüber hinaus fiel den Forschern auf, dass auch bei natürlich auftretenden Liganden für Proteine, also bei biologisch aktiven Naturstoffen, bestimmte Grundstrukturen wiederholt auftreten. Die Max-Planck-Forscher schlagen deshalb vor, die grundlegende Struktur solcher Naturstoffklassen, die offenbar in der Evolution für die Bindung an ganz bestimmte Proteindomänen selektioniert wurden, als Basis für den Entwurf und die Herstellung von Substanzbibliotheken zu verwenden. Diese Bibliotheken sollten mit einer deutlich höheren Frequenz biologisch aktive Treffer, so genannte "Hits", liefern als die herkömmliche Wirkstoffsuche, die besonders auf der Basis der reinen "Zahlenkombination" und damit der chemischen Machbarkeit aufbaut.

"Abb. 2: Kombinatorische Synthese einer Substanzbibliothek. Die Zielverbindung wird "gedanklich" in einzelne Bausteine zerlegt, die dann bei der Synthese z. B. an einem polymeren Träger in verschiedenen Kombinationen miteinander verknüpft werden. Die gestrichelten Linien zeigen die gedanklichen Schnitte an, die Kugel symbolisiert den Träger, an dem die Synthese durchgeführt wird." "Grafik: MPI für Molekulare Physiologie/Schulte/Herter"

Das "Domänenkonzept" nimmt also eine Naturstoffklasse als den bereits in der Evolution bestätigten und damit relevanten Startpunkt der Wirkstoffsuche und der Entwicklung von Substanzbibliotheken. Die Wissenschaftler haben ihr Konzept jetzt in drei Studien in der Fachzeitschrift "Angewandten Chemie" präsentiert. Den Grundgedanken des "Domänenkonzepts" beschreiben die Autoren am Beispiel eines natürlichen Inhibitors der Proteinphosphatase Cdc25 (Angew. Chem. Int. Ed. 2002, 41, 307-311). In dieser Studie ist es ihnen gelungen, eine der Haupthürden bei der Umsetzung des Konzepts zu überwinden: Sie konnten eine Substanzbibliothek aus komplizierten Naturstoffen ableiten und in vielstufigen, sehr anspruchsvollen Synthesesequenzen aufbauen (Abb. 2 und Abb. 3). Die Proteinphosphatase Cdc25 ist wesentlich an der Kontrolle des Zellzyklus beteiligt und gilt als Ansatzpunkt für die Entwicklung neuer Anti-Tumor-Wirkstoffe. Ausgehend von einem natürlichen Inhibitor der Protein-Tyrosinkinase Her-2/Neu wird in der zweiten Studie die Synthese einer kleinen Substanzbibliothek vorgestellt, aus der mit hoher Trefferquote Inhibitoren für die Tie-2-, die VEGFR-3- und die IGF1-Rezeptortyrosinkinasen identifiziert wurden. Tie-2 und VEGFR-3 steuern entscheidend die Neubildung von Blut- und Lymphgefäßen und bieten deshalb ebenfalls neue, vielversprechende Ansatzpunkte für die Tumortherapie (Angew. Chem. Int. Ed. 2002, im Druck).

"Abb. 3: Synthese einer Dysidiolid-Bibliothek am polymeren Träger. Mithilfe einer komplizierten und langen Festphasensynthese wurde eine Bibliothek von Analoga des Cdc25-Protein-Phosphatase-Inhibitors Dysidiolid aufgebaut. Die Synthese belegt, dass Naturstoffe und davon abgeleitete Substanzbibliotheken an polymeren Trägern aufgebaut werden können. Das Bild zeigt rasterelektronische Aufnahmen von Polymer-Kügelchen und Tumorzellen. Die vor den Polymer-Kugeln schwebenden Tumorzellen wurden in einem Cytotoxizitäts-Assay eingesetzt. Das Ergebnis des Assays ist auf den ebenfalls gezeigten Mikrotiterplatten schon mit bloßem Auge zu erkennen: Lebende Zellen wandeln einen gelben in einen rotvioletten Farbstoff um. Das Bild zeigt ebenfalls die Struktur des Zielproteins Cdc25. " "Grafik: MPI für Molekulare Physiologie/Schulte/Herter "

Eine dritte, noch im Druck befindliche Abhandlung präzisiert das Konzept im Detail (Angew. Chem. Int. Ed. Engl. 2002, im Druck).

Als nächstes werden die Dortmunder Wissenschaftler die Hauptklassen von Proteindomänen sowie ihre natürlichen Liganden analysieren. Umgekehrt suchen sie in bekannten, biologisch aktiven Naturstoffklassen nach grundlegenden, sich wiederholenden Strukturmotiven. Auf Grundlage dieser Analysen wollen sie neue Substanzbibliotheken entwerfen und aufbauen, ihr Konzept weiter untermauern und verfeinern und gezielt nach neuen medizinisch wichtigen Wirkstoffen suchen.

Die "kombinatorische Naturstoffsynthese" haben die Dortmunder Wissenschaftler auch in die Neugründung einer "Start-up"-Firma eingebracht. Herbert Waldmann und Alfred Wittinghofer vom Dortmunder Max-Planck-Institut für Molekulare Physiologie, Walter Birchmeier vom Max-Delbrück-Zentrum Berlin, Hans Bos und Hans Clevers vom University Medical Center Utrecht sowie der erfahrene Pharma-Manager Rian de Jonge haben die Firma Semaia Pharmaceuticals gegründet. Semaia vereint Tumorbiologie, Strukturbiologie und Medizinische Chemie unter einem Dach und entwickelt neue Medikamente gegen Krankheiten, die durch Fehler in der biologischen Signalübertragung verursacht werden. Dazu gehört insbesondere Krebs.

Weitere Informationen erhalten Sie von:

Prof. Herbert Waldmann Max-Planck-Institut für molekulare Physiologie, Dortmund Tel.: 02 31 / 1 33 - 24 00 Fax: 02 31 / 1 33 - 24 99 E-Mail: herbert.waldmann@mpi-dortmund.mpg.de

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de/pri02/pri0209.htm
http://www.mpi-dortmund.mpg.de/departments/dep4/waldmann/index2.html

Weitere Berichte zu: Evolution Physiologie Protein Substanzbibliothek Synthese

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Die bestmögliche Behandlung bei Hirntumor-Erkrankungen
28.03.2017 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Demenz: Forscher testen Wirkstoffe im Hochdurchsatz
28.03.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie