Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB - Neurowissenschaftler verbessern Tastsinn durch Stimulation von außen

18.10.2005


Lernen wie von Zauberhand


Gehirnstimulation von außen ermöglicht Lernprozesse
RUB-Neurowissenschaftler verbessern Tastsinn

... mehr zu:
»Nervenzelle »Tastsinn


Übung macht den Meister - das gilt auch für Wahrnehmungsleistungen wie den Tastsinn. Durch andauerndes Training lässt sich der Tastsinn kontinuierlich verbessern (perzeptuelles Lernen). Nur im Tiermodell bei der Untersuchung einzelner Nervenzellen war es bisher möglich, ohne Training allein durch Applikation elektrischer Pulse Lernprozesse direkt auszulösen. Die Wirksamkeit einer vergleichbaren Methode zur Auslösung von Lernen, bei der das Gehirn des Menschen ebenfalls direkt stimuliert wird, haben Bochumer Forscher um Associate Professor Dr. Hubert Dinse (Institut für Neuroinformatik, Abteilung Theoretische Biologe) und Prof. Dr. Martin Tegenthoff (Neurologische Universitätsklinik, BG-Kliniken Bergmannsheil) jetzt erstmals gezeigt. Mit einer Magnetspule reizten sie von außen diejenigen Gehirnbereiche, die für den Tastsinn zuständig sind: Ein Lernerfolg stellte sich ein, der in seiner Stärke mit dem von Training vergleichbar war. Über die Ergebnisse der Neurowissenschaftler berichtet die Fachzeitschrift PLoS Biology in ihrer Ausgabe vom 17. Oktober 2005.

Aktives Training des Tastsinns

Perzeptuelles Lernen - die Steigerung der Genauigkeit des Tastsinns - erfolgt durch stete Wiederholung. So lassen sich Objekte, die in ihrer Oberflächenbeschaffenheit sehr ähnlich sind, nach längerem Training allein durch Anfassen voneinander unterscheiden. Ein bekanntes Beispiel dafür ist die Fähigkeit Blindenschrift zu lesen. Die dabei eine zentrale Eigenschaft ist die der "räumlichen taktilen Auflösung", die mit hoher Genauigkeit im Labor gemessen werden kann: Der kleinste Abstand, bei dem eine Versuchsperson mit ihrem Finger noch zwei getrennte Reize wahrnimmt, ist die Zweipunktunterscheidungsfähigkeit. Jeder Mensch hat eine individuelle Zweipunktunterscheidungsschwelle, die sich durch langandauerndes Training herabsetzen lässt.

Passive Stimulation des Gehirns

Die Auslösung von Lernprozessen an Nervenzellen ohne Training gelingt an Gehirnschnitten seit einiger Zeit: Die Forscher leiten mit Mikroelektroden schwache elektrische Ströme in die Nervenzellen. Dadurch verändert sich dauerhaft die Reiz-Übertragungsstärke der Verbindungsstellen zwischen zwei Nervenzellen, den Synapsen: Die Wissenschaftler sprechen von einer Langzeitpotenzierung (long-term potentiation, LTP). "Diese dauerhafte Veränderung ist das Grundelement des Lernens", erklärt Dinse. "Übertragen auf den gesamten Organismus heißt das, dass Lernen auch ohne Aufmerksamkeit oder Bedeutungsgehalt des Reizes funktioniert." Diese Überlegungen waren Ausgangspunkt für die neuen Untersuchungen der Bochumer Forscher.

Magnetpulse als Trainingsersatz

Um einen vergleichbaren Versuch am lebenden Menschen durchzuführen, bedienten sie sich der sog. Repetitiven Transkraniellen Magnetstimulation (rTMS). Dabei werden über eine elektromagnetische Spule, die von außen auf den Kopf gelegt wird, wiederholt kurze Magnetpulse mit einer bestimmten Frequenz übertragen. Diese durchdringen ohne Beeinträchtigungen den Schädel und verursachen im Gehirn elektrische Ströme, die die Nervenzellen aktivieren. Die Bochumer Forscher konzentrierten sich auf die Hirnregion, die den Tastsinn des rechten Zeigefingers repräsentiert. Ab einer bestimmten Stärke der Magnetpulse fühlten die Probanden dort ein leichtes Kribbeln. Das Ergebnis: Nach einer Anwendung der rTMS von zwei mal neun Minuten verbesserte sich die räumliche taktile Auflösungsfähigkeit des Fingers, die Zweipunktunterscheidungsschwelle wurde kleiner. Die Verbesserung des Tastsinns war vergleichbar mit der nach längerem Training. Sie war trotz der kurzen Zeit der rTMS von zwei mal neun Minuten über etwa zwei Stunden nachweisbar, danach ging sie auf die ursprünglichen Werte zurück.

Spuren der Lernprozesse im Gehirn

Um die Spuren der Lernprozesse sichtbar zu machen, nutzten die Bochumer Forscher in Zusammenarbeit mit dem Institut für Radiologie der BG-Kliniken Bergmannsheil (Direktor: Prof. Dr. Volkmar Nicolas) die funktionelle Kernspintomographie. Damit kann man von außen die Aktivität von Nervenzellen im Gehirn messen, ohne die Versuchsperson zu schädigen oder zu belasten. Die Untersuchungen ergaben, dass nach der Magnetstimulation das aktivierte Hirnareal im Repräsentationsbereich des gereizten Zeigefingers deutlich größer war als zuvor. Betroffen war der Teil des Gehirns, der als "Eingangstor" für Informationen des Tastsinns in der Großhirnrinde dient (im primären somatosensorischen Kortex). Ebenso wie bei den Untersuchungen des Tastsinns bildeten sich die Veränderungen der Hirnaktivität innerhalb von etwa zwei Stunden wieder zurück.

Verbesserter Tastsinn im Gehirn zu beobachten

Versuchspersonen mit dem am deutlichsten verbesserten Tastsinn hatten gleichzeitig auch die größten aktivierten Hirnbereiche. "Man kann also durch die jeweilige Gehirnaktivität die lernbedingte Verbesserung des Tastsinns vorhersagen", erklärt Tegenthoff. "Es besteht ein direkter Zusammenhang zwischen vergrößerter Hirnaktivität und einer definierten Verbesserung der Wahrnehmungsfähigkeit."

Kein Nürnberger Trichter

Was auf den ersten Blick aussieht wie ein Nürnberger Trichter ist tatsächlich der Ausdruck der enormen plastischen Fähigkeiten des Gehirns. Die Auslösung von Plastizität und Lernen unterliegt präzise definierten Randbedingungen. Finden diese Anwendung, werden auf zellulärer und subzellulärer Ebene Mechanismen in Gang gesetzt, die zu Veränderungen der synaptischen Übertragungsstärke führen. Diese wiederum verändern die Art und Weise, in der die neuronalen Netzwerke des Gehirns Information aus der Umwelt, hier des Tastsinns, verarbeitet. Einer der bemerkenswertesten Befunde dieser Untersuchung ist der, dass rTMS das neuronale Netzwerk nicht destabilisiert, sondern neuartiges, aber ebenfalls stabiles und organisiertes neuronales Verhaltens erzeugt. "Eine der vielen spannenden Fragen" sagt Dinse, "ist daher, welche neuronalen Eigenschaften dafür verantwortlich sind, dass es Nervenzellnetze Gehirn schaffen, nach ihrer Veränderung durch TMS-Pulse ohne verhaltensrelevante Information neue Zustände einzunehmen, die mit verbesserter Wahrnehmung verbunden sind."

Mögliches Einsatzgebiet: Schlaganfall

Die aktuelle Untersuchung ist die konsequente Fortführung einer Serie von Arbeiten der interdisziplinären neurobiologischen RUB-Arbeitsgruppe. Grundlage ist ein theoretisches Konzept, wonach Lernen durch passive Stimulationen gezielt erzeugt und kontrolliert werden kann. Mögliche Einsatzgebiete einer derartigen Lerntechnik sind z.B. neurorehabilitative Verfahren bei Patienten mit schweren Hirnverletzungen oder Schlaganfällen. Weitere Untersuchungen sind nötig, um das Verfahren weiter zu optimieren, und um Möglichkeiten zu finden, die ausgelösten Lernprozesse über längere Zeit zu stabilisieren.

Weitere Informationen

Prof. Dr. Martin Tegenthoff, Neurologische Klinik der BG-Kliniken Bergmannsheil, Klinikum der Ruhr-Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Tel: 0234/302-6808, Fax: 0234/302-6888, E-Mail: martin.tegenthoff@ruhr-uni-bochum.de

Associate Professor Dr. Hubert R. Dinse, Institut für Neuroinformatik der RUB, Tel: 0234/32-25565, Fax: 0234/32-14209, E-Mail: hubert.dinse@neuroinformatik.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.neuroinformatik.ruhr-uni-bochum.de/PROJECTS/ENB/enb_d.html
http://www.bergmannsheil.de/neurologie

Weitere Berichte zu: Nervenzelle Tastsinn

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Dual-Layer Spektral-CT: Bessere Therapieplanung beim Bauchspeicheldrüsenkrebs
18.05.2017 | Deutsche Röntgengesellschaft e.V.

nachricht MRT-Kontrastmittel: Neue Studie spricht für Sicherheit
17.05.2017 | Deutsche Röntgengesellschaft e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie