Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB - Neurowissenschaftler verbessern Tastsinn durch Stimulation von außen

18.10.2005


Lernen wie von Zauberhand


Gehirnstimulation von außen ermöglicht Lernprozesse
RUB-Neurowissenschaftler verbessern Tastsinn

... mehr zu:
»Nervenzelle »Tastsinn


Übung macht den Meister - das gilt auch für Wahrnehmungsleistungen wie den Tastsinn. Durch andauerndes Training lässt sich der Tastsinn kontinuierlich verbessern (perzeptuelles Lernen). Nur im Tiermodell bei der Untersuchung einzelner Nervenzellen war es bisher möglich, ohne Training allein durch Applikation elektrischer Pulse Lernprozesse direkt auszulösen. Die Wirksamkeit einer vergleichbaren Methode zur Auslösung von Lernen, bei der das Gehirn des Menschen ebenfalls direkt stimuliert wird, haben Bochumer Forscher um Associate Professor Dr. Hubert Dinse (Institut für Neuroinformatik, Abteilung Theoretische Biologe) und Prof. Dr. Martin Tegenthoff (Neurologische Universitätsklinik, BG-Kliniken Bergmannsheil) jetzt erstmals gezeigt. Mit einer Magnetspule reizten sie von außen diejenigen Gehirnbereiche, die für den Tastsinn zuständig sind: Ein Lernerfolg stellte sich ein, der in seiner Stärke mit dem von Training vergleichbar war. Über die Ergebnisse der Neurowissenschaftler berichtet die Fachzeitschrift PLoS Biology in ihrer Ausgabe vom 17. Oktober 2005.

Aktives Training des Tastsinns

Perzeptuelles Lernen - die Steigerung der Genauigkeit des Tastsinns - erfolgt durch stete Wiederholung. So lassen sich Objekte, die in ihrer Oberflächenbeschaffenheit sehr ähnlich sind, nach längerem Training allein durch Anfassen voneinander unterscheiden. Ein bekanntes Beispiel dafür ist die Fähigkeit Blindenschrift zu lesen. Die dabei eine zentrale Eigenschaft ist die der "räumlichen taktilen Auflösung", die mit hoher Genauigkeit im Labor gemessen werden kann: Der kleinste Abstand, bei dem eine Versuchsperson mit ihrem Finger noch zwei getrennte Reize wahrnimmt, ist die Zweipunktunterscheidungsfähigkeit. Jeder Mensch hat eine individuelle Zweipunktunterscheidungsschwelle, die sich durch langandauerndes Training herabsetzen lässt.

Passive Stimulation des Gehirns

Die Auslösung von Lernprozessen an Nervenzellen ohne Training gelingt an Gehirnschnitten seit einiger Zeit: Die Forscher leiten mit Mikroelektroden schwache elektrische Ströme in die Nervenzellen. Dadurch verändert sich dauerhaft die Reiz-Übertragungsstärke der Verbindungsstellen zwischen zwei Nervenzellen, den Synapsen: Die Wissenschaftler sprechen von einer Langzeitpotenzierung (long-term potentiation, LTP). "Diese dauerhafte Veränderung ist das Grundelement des Lernens", erklärt Dinse. "Übertragen auf den gesamten Organismus heißt das, dass Lernen auch ohne Aufmerksamkeit oder Bedeutungsgehalt des Reizes funktioniert." Diese Überlegungen waren Ausgangspunkt für die neuen Untersuchungen der Bochumer Forscher.

Magnetpulse als Trainingsersatz

Um einen vergleichbaren Versuch am lebenden Menschen durchzuführen, bedienten sie sich der sog. Repetitiven Transkraniellen Magnetstimulation (rTMS). Dabei werden über eine elektromagnetische Spule, die von außen auf den Kopf gelegt wird, wiederholt kurze Magnetpulse mit einer bestimmten Frequenz übertragen. Diese durchdringen ohne Beeinträchtigungen den Schädel und verursachen im Gehirn elektrische Ströme, die die Nervenzellen aktivieren. Die Bochumer Forscher konzentrierten sich auf die Hirnregion, die den Tastsinn des rechten Zeigefingers repräsentiert. Ab einer bestimmten Stärke der Magnetpulse fühlten die Probanden dort ein leichtes Kribbeln. Das Ergebnis: Nach einer Anwendung der rTMS von zwei mal neun Minuten verbesserte sich die räumliche taktile Auflösungsfähigkeit des Fingers, die Zweipunktunterscheidungsschwelle wurde kleiner. Die Verbesserung des Tastsinns war vergleichbar mit der nach längerem Training. Sie war trotz der kurzen Zeit der rTMS von zwei mal neun Minuten über etwa zwei Stunden nachweisbar, danach ging sie auf die ursprünglichen Werte zurück.

Spuren der Lernprozesse im Gehirn

Um die Spuren der Lernprozesse sichtbar zu machen, nutzten die Bochumer Forscher in Zusammenarbeit mit dem Institut für Radiologie der BG-Kliniken Bergmannsheil (Direktor: Prof. Dr. Volkmar Nicolas) die funktionelle Kernspintomographie. Damit kann man von außen die Aktivität von Nervenzellen im Gehirn messen, ohne die Versuchsperson zu schädigen oder zu belasten. Die Untersuchungen ergaben, dass nach der Magnetstimulation das aktivierte Hirnareal im Repräsentationsbereich des gereizten Zeigefingers deutlich größer war als zuvor. Betroffen war der Teil des Gehirns, der als "Eingangstor" für Informationen des Tastsinns in der Großhirnrinde dient (im primären somatosensorischen Kortex). Ebenso wie bei den Untersuchungen des Tastsinns bildeten sich die Veränderungen der Hirnaktivität innerhalb von etwa zwei Stunden wieder zurück.

Verbesserter Tastsinn im Gehirn zu beobachten

Versuchspersonen mit dem am deutlichsten verbesserten Tastsinn hatten gleichzeitig auch die größten aktivierten Hirnbereiche. "Man kann also durch die jeweilige Gehirnaktivität die lernbedingte Verbesserung des Tastsinns vorhersagen", erklärt Tegenthoff. "Es besteht ein direkter Zusammenhang zwischen vergrößerter Hirnaktivität und einer definierten Verbesserung der Wahrnehmungsfähigkeit."

Kein Nürnberger Trichter

Was auf den ersten Blick aussieht wie ein Nürnberger Trichter ist tatsächlich der Ausdruck der enormen plastischen Fähigkeiten des Gehirns. Die Auslösung von Plastizität und Lernen unterliegt präzise definierten Randbedingungen. Finden diese Anwendung, werden auf zellulärer und subzellulärer Ebene Mechanismen in Gang gesetzt, die zu Veränderungen der synaptischen Übertragungsstärke führen. Diese wiederum verändern die Art und Weise, in der die neuronalen Netzwerke des Gehirns Information aus der Umwelt, hier des Tastsinns, verarbeitet. Einer der bemerkenswertesten Befunde dieser Untersuchung ist der, dass rTMS das neuronale Netzwerk nicht destabilisiert, sondern neuartiges, aber ebenfalls stabiles und organisiertes neuronales Verhaltens erzeugt. "Eine der vielen spannenden Fragen" sagt Dinse, "ist daher, welche neuronalen Eigenschaften dafür verantwortlich sind, dass es Nervenzellnetze Gehirn schaffen, nach ihrer Veränderung durch TMS-Pulse ohne verhaltensrelevante Information neue Zustände einzunehmen, die mit verbesserter Wahrnehmung verbunden sind."

Mögliches Einsatzgebiet: Schlaganfall

Die aktuelle Untersuchung ist die konsequente Fortführung einer Serie von Arbeiten der interdisziplinären neurobiologischen RUB-Arbeitsgruppe. Grundlage ist ein theoretisches Konzept, wonach Lernen durch passive Stimulationen gezielt erzeugt und kontrolliert werden kann. Mögliche Einsatzgebiete einer derartigen Lerntechnik sind z.B. neurorehabilitative Verfahren bei Patienten mit schweren Hirnverletzungen oder Schlaganfällen. Weitere Untersuchungen sind nötig, um das Verfahren weiter zu optimieren, und um Möglichkeiten zu finden, die ausgelösten Lernprozesse über längere Zeit zu stabilisieren.

Weitere Informationen

Prof. Dr. Martin Tegenthoff, Neurologische Klinik der BG-Kliniken Bergmannsheil, Klinikum der Ruhr-Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Tel: 0234/302-6808, Fax: 0234/302-6888, E-Mail: martin.tegenthoff@ruhr-uni-bochum.de

Associate Professor Dr. Hubert R. Dinse, Institut für Neuroinformatik der RUB, Tel: 0234/32-25565, Fax: 0234/32-14209, E-Mail: hubert.dinse@neuroinformatik.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.neuroinformatik.ruhr-uni-bochum.de/PROJECTS/ENB/enb_d.html
http://www.bergmannsheil.de/neurologie

Weitere Berichte zu: Nervenzelle Tastsinn

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Dimethylfumarat – eine neue Behandlungsoption für Lymphome
28.03.2017 | Wilhelm Sander-Stiftung

nachricht Die bestmögliche Behandlung bei Hirntumor-Erkrankungen
28.03.2017 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie