Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Fenster zur nanoskopischen Medizin

30.05.2005


Bei der Erforschung menschlicher Zellen, die seit langem als einzige Quelle aller Gesundheit und Krankheit erkannt wurden, ist die klassische Licht-Mikroskopie bislang an ihre Grenzen gestoßen. Das Auflösungsvermögen dieses Verfahrens reichte nicht aus, um auch feinste Strukturen im Innern der Zelle sichtbar zu machen. Moderne Elektronenmikroskope erlauben zwar deutlich präzisere Einblicke, haben jedoch wie alle anderen neueren Mikroskopiertechniken den Nachteil, dass sie sich nicht zur Betrachtung des Inneren lebender Zellen eignen. Völlig neue Perspektiven bietet jetzt ein Lichtmikroskop, mit dem Forscher auch bei lebenden Zellen, ohne sie zu zerstören, in Dimensionen vordringen können, die bislang der Elektronenmikroskopie vorbehalten waren. Eine solches so genanntes 4Pi-Mikroskop, das einen Wert von fast einer Million Euro hat, hat die Deutsche Forschungsgemeinschaft jetzt Prof. Dr. Reiner Peters und seinem Team am Institut für Medizinische Physik und Biophysik des Universitätsklinikums Münster (UKM) zur Verfügung gestellt. Münster ist damit neben Heidelberg und Göttingen bislang weltweit der einzige Standort, an dem mit diesem modernen Verfahren gearbeitet wird.



Vorgestellt und offiziell übergeben wurde das 4Pi-Mikroskop am Freitag (27. Mai 2005) im Rahmen eines Workshops im Zentrum für Nanotechnologie (CeNTech) in Münster. "4Pi-Mikroskopie: Ein neues Fenster zur nanoskopischen Medizin" war die Veranstaltung überschrieben. Die Auflösung des neuartigen Lichtmikroskops reicht heute in der Tat so weit, dass Strukturen bis zu einer minimalen Größe von 100 Nanometern dargestellt werden können, wobei ein Nanometer gerade mal ein Milliardstel Meter beziehungsweise ein Millionstel Millimeter ist. Besser vorstellbar wird diese winzige Größenordnung, wenn man sich vor Augen führt, dass das Verhältnis eines Nanometers zum Meter in etwa dem des Durchmessers einer Haselnuss zu dem der Erde entspricht. Für die Medizin birgt das Vordringen in solch winzige Strukturen völlig neue Perspektiven für Diagnostik und Therapie. "Die menschlicher Zelle ist ein Netzwerk nanoskopischer Komponenten", erläutert Prof. Peters. "Die Zukunft der Medizin wird deshalb in entscheidendem Maße von neuen Techniken abhängen, mit denen diese Komponenten in lebenden Zellen einer Diagnose und Therapie zugänglich gemacht werden können", so der Wissenschaftler, der am Institut für Medizinische Physik und Biophysik des UKM die Abteilung für Molekulare Zellbiologie leitet und gleichzeitig Gruppenleiter und Vorstandsmitglied des CeNTech ist.



Peters und sein Team arbeiten seit vielen Jahren an der Entwicklung solcher Techniken. Eine dieser Methoden, die so genannte Fluoreszenz-Mikrophotolyse (FRAP), mit der Transport- und Regulationsvorgänge in einzelnen lebenden Zellen dargestellt werden können, hat inzwischen weltweite Verbreitung in der biomedizinischen Forschung gefunden. In Verbindung mit der 4Pi-Mikroskopie kann diese Technik nun auch Informationen über dynamische Vorgänge in kleinsten Zellstrukturen liefern. Das Auflösungsvermögen des neuartigen Lichtmikroskops wird nach Worten Peters’ durch eine überaus raffinierte und hochtechnologische Kombination eines neuen Abbildungsprinzips mit ultra-kurzen Lichtblitzen, schnellen Scannern, empfindlichen Lichtdetektoren und Computern erreicht. Im Gegensatz zu herkömmlichen Mikroskopen hat es zwei Objektive, die das Untersuchungsobjekt einschließen. Dadurch kann fast das gesamte vom Objekt austretende Licht gesammelt und zur Abbildung nutzbar gemacht werden.

Neben der Arbeitsgruppe von Prof. Peters, die das neue Verfahren nutzt, um neue Informationen über nanoskopische Komponenten der Zelle zu erhalten, werden in Münster auch andere Bereiche davon profitieren. So werden Prof. Dr. Wolfgang Berdel und seine Mitarbeiter in der Medizinischen Klinik A des UKM das Gerät im Rahmen der Leukämieforschung einsetzen, während Prof. Dr. Hans Schöler und seine Gruppe am Max-Planck-Institut für Molekulare Biomedizin damit der Differenzierung von Stammzellen näher auf die Spur kommen wollen.

Weitere Auskünfte:
Prof. Dr. Reiner Peters
Institut für Medizinische Physik und Biophysik, Robert-Koch-Strasse 31, 48149 Münster, und
CeNTech, Gievenbeckerweg 11, 48149 Münster
Tel. 0251-8356933, Fax 0251-8355121, Email: petersr@uni-muenster.de

Jutta Reising | idw
Weitere Informationen:
http://www.klinikum.uni-muenster.de/institute/impb/
http://www.uni-muenster.de/

Weitere Berichte zu: Biophysik Lichtmikroskop Nanometer Physik UKM Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten