Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oberflächenphysik: Quantensprung in der Messempfindlichkeit

29.10.2004


Marburger Professor hat Wechselwirkung zwischen einlagiger Schicht von Xenonatomen und Iridiumoberfläche mit bisher größter Genauigkeit vermessen - Ergebnisse in US-Wissenschaftsmagazin PNAS veröffentlicht

... mehr zu:
»Atom »Magnetfeld »PNAS »Physik »Xenonatom

Einer Forschergruppe um den Experimentalphysiker Professor Dr. Heinz J. Jänsch vom Fachbereich Physik der Philipps-Universität Marburg ist es gelungen, die Anziehungskräfte zwischen einer einschichtigen Lage von Xenonatomen und einer Iridium(111)-Oberfläche hundert Mal genauer zu vermessen als bisher. Jänsch setzte dazu die Kernspinresonanzspektroskopie (NMR, nuclear magnetic resonance) ein, kombinierte sie mit einer optischen Methode und erhielt so hunderttausendfach stärkere Messsignale als üblich. "Damit haben wir einen Quantensprung in der Empfindlichkeit vollzogen", so der Marburger Professor, "der absolut notwendig für die jetzt erzielten Resultate war."

Seine auf neuartigem experimentellem Wege gewonnenen Erkenntnisse, die er gemeinsam mit Dr. Peter Gerhard und dem Doktoranden Matthias Koch (beide ebenfalls vom Fachbereich Physik) in den Proceedings of the National Academy of Sciences (PNAS) vom 21. September 2004 veröffentlichte, weisen nun auf Schwierigkeiten in der so genannten Dichte-Funktional-Theorie hin, mit der Oberflächenphysiker die Eigenschaften von Festkörpern beschreiben, und können dazu beitragen, diese zu verbessern.


Dies hätte ganz praktische Auswirkungen: Die schwachen Anziehungskräfte auf atomarer Ebene erklären beispielsweise, wie es einem Gecko gelingt, Wände hoch zu laufen, warum Farbe auf einer Wand hält oder wie groß die mechanische Stabilität vieler Plastikwerkstoffe ist. Das genaue Wissen um diese Kräfte könnte bei der Entwicklung von Stoffen helfen, die besonders gut oder eben gar nicht aneinander haften. "Theoretisch ist schon seit den 1930er Jahren bekannt, wie man die Wechselwirkungen zwischen einem Metall wie Iridium und den chemisch so wenig reaktiven Xenonatomen beschreiben kann", erläutert Jänsch. "Die dazu erforderlichen Berechnungen sind jedoch selbst im Computerzeitalter noch zu umfangreich." Seine experimentellen Ergebnisse könnten dazu beitragen, die bisher üblichen Näherungsverfahren zu verbessern und so die schwachen Anziehungskräfte zwischen Atomen und Molekülen an der Oberfläche von Festkörpern besser zu beschreiben.

Zähmung der Widerspenstigen

Der Schlüssel zum Erfolg lag darin, die Xenonkernmagnete erstens in großer Zahl in dieselbe Richtung auszurichten, zu polarisieren, und sie zweitens auf einen hochpolierten Iridiumblock (einen Kristall) aufzudampfen, statt - wie üblich - Iridiumpulver zu verwenden.

Bei der Polarisierung werden die magnetischen Momente möglichst vieler Xenonatomkerne herkömmlicherweise durch ein angelegtes Magnetfeld in dieselbe Richtung ausgerichtet. "Die Kernmagnete sind allerdings so klein, dass auch starke Magnetfelder sie kaum beeindrucken", erklärt Jänsch. "Das ist vergleichbar mit einem Tischtennisball, auf den mit einem Filzschreiber ein Punkt gemalt wurde. Obwohl der Ball an diesem Punkt schwerer ist, würde er sich, auf ein Rüttelbrett gelegt, doch nicht mit dem Punkt nach unten ausrichten."

Dieses Problem löste Jänsch durch den Einsatz der Methode des "optischen Pumpens" mit Hilfe eines Lasers. Damit erreichte er, dass in seiner Versuchsanordung bis zu neunzig Prozent der Atome gleich ausgerichtet sind. "Das ist ein hervorragender Wert, vielleicht sogar Weltrekord", so Jänsch. Eine hohe Polarisation ist Voraussetzung, um schwache Signale nachzuweisen; bei vergleichbaren Messungen ist meist nur etwa ein Hunderttausendstel der Atome polarisiert. "Ein weiterer Clou an der Sache ist", erklärt Jänsch weiter, "dass die Atome, einmal ausgerichtet, sehr resistent gegen äußere Einflüsse sind. Wir können das ausgerichtete Xenongas sogar einfrieren und für spätere Versuche aufheben."

Diese Vorbereitungen ermöglichten es schließlich auch, für die Messungen einen hochpolierten Iridiumkristall einzusetzen. Normalerweise wird der Nachteil der geringen Polarisation durch die große Oberfläche von Iridiumpulver ausgeglichen. Dabei aber muss in Kauf genommen werden, dass das Pulver im Vergleich zu einem polierten Kristall sehr inhomogen ist - "etwa wie ein lupenreiner Diamant im Vergleich zu Schmirgelstaub," so Jänsch. Die hohe Polarisation der Xenonatome indessen macht die große Oberfläche überflüssig: Weil der Kristall nicht in viele verschiedene Richtungen zeigt, werden die Messergebnisse nicht "verwischt", wie das bei Pulver der Fall ist. Auf dem Iridiumkristall lassen sich etwa einhundert mal "schärfere" Ergebnisse als auf Pulver gewinnen. Auf diese Weise konnten Signalpositionen und relevante Verschiebungen erstmals überhaupt gemessen werden.

Weniger als vorhergesagt

Untersucht wurde nun die so genannte van-der-Waals-Wechselwirkung zwischen Xenonatomen und den im Metallgitter gebundenen Iridiumatomen. Diese Wechselwirkung entsteht, weil sich Elektronen in beiden Atomsorten so verschieben, dass es zu einer schwachen elektrischen Anziehungskraft kommt (die auch dazu beiträgt, dass das Edelgas auf dem Metall "haften" bleibt). Zur Messung dieser Anziehungskraft untersuchte Jänsch die Xenonkerne mittels Kernspinresonanzspektroskopie. Dabei wird ein äußeres Magnetfeld angelegt und geprüft, auf welcher Frequenz die Xenonkerne "mitschwingen". Die Elektronen innerhalb der Atomhüllen jedoch beeinflussen dieses Magnetfeld ebenfalls, sodass die Kerne schließlich nur ein verändertes "lokales" Magnetfeld spüren. Die Differenz zwischen äußerem und lokalem Magnetfeld, die "chemische Verschiebung", ist nun das eigentliche Messergebnis, das die Forscher sehen wollten.

Diese Verschiebung, so konnte Jänsch schließlich zeigen, ist um den Faktor zehn kleiner als es die Dichte-Funktional-Theorie vorhersagt. "Wenn die Xenonatome auf dem Metall sitzen, geht die Ausrichtung ihrer Kerne mit der Zeit verloren. Den Prozess nennt man Relaxation und die dafür nötige Zeit: Relaxationszeit. Anfänglich wollten wir unser Experiment gar nicht machen, da die theoretische Vorhersage für die Relaxationszeit einfach zu kurz war. Ein Glück, dass wir es dennoch wagten," so Jänsch. Auch bei der Berechnung der Relaxationszeit zeigt die Theorie deutliche Defizite, in Jänschs Fall sagte sie zu kleine Werte voraus. Der Grund für die Abweichung von den theoretischen Vorhersagen liegt Jänsch zufolge darin, dass die "Vermischung" der Iridiumelektronen mit den Xenonelektronen noch nicht richtig verstanden ist. "Nun liegt der Ball wieder im Feld der Theoretiker", so Jänsch schmunzelnd.

Weitere Experimente geplant

Die ungewöhnliche Messung führte Jänsch bisher nur an Iridium durch. Oberflächen verschiedener Festkörper sind aber sehr verschieden, daher sind Experimente an Kupfer und Silizium in Vorbereitung. Eine erhebliche Ausweitung der Messmöglichkeiten kann erreicht werden, wenn nicht nur das aufgedampfte Xenon, sondern auch die unterliegende Oberfläche mit Hilfe der Kernresonanz untersucht werden kann. Hierzu sind weitere Arbeiten notwendig. "Lohnend ist diese Grundlagenforschung allemal", erwartet Jänsch, "denn sie wird unser Verständnis der schwachen Anziehungskräfte, die uns alle umgeben, weiter verbessern."

Weitere Informationen

Veröffentlichung in PNAS: H.J. Jänsch, P. Gerhard, M. Koch, "129Xe on Ir(111): NMR study of xenon on a metal single crystal", Proceedings of the National Academy of Sciences (PNAS), Vol. 101, Nr. 38, S. 13715, vom 21. September 2004

Professor Dr. Heinz J. Jänsch: Fachbereich Physik / Wissenschaftliches Zentrum für Materialwissenschaften der Philipps-Universität Marburg, Renthof 5, 35032 Marburg
Tel.: (06421) 28 24136, E-Mail: heinz.jaensch@physik.uni-marburg.de

Arbeitsgruppe Oberflächenphysik des Fachbereichs Physik: http://www.physik.uni-marburg.de/surf/surf.html

Thilo Körkel | idw
Weitere Informationen:
http://www.physik.uni-marburg.de/surf/surf.html
http://www.uni-marburg.de

Weitere Berichte zu: Atom Magnetfeld PNAS Physik Xenonatom

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie