Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verfahren zur sekundenschnellen Diagnose von Gefäßerkrankungen entwickelt

07.07.2004


Radiologem müssen bis zu 1500 Schnittbilder sichten, um Gefäßerkrankungen diagnostizieren zu können. Informatiker der Technischen Universität Wien haben Verfahren entwickelt, in der erkrankte Stellen in Sekundenschnelle sichtbar sind.



Radiologen nehmen - unter anderem - Blutgefäße unter die Lupe, um festzustellen, ob sie verengt, verkalkt oder verstopft sind. Dazu verwenden sie modernste Computer Tomographen, die in nur 40 - 70 Sekunden bis zu 1500 Schnittbilder erstellen. Um zu erkennen, ob und wo pathologische Veränderungen der Gefäße vorliegen, muss der Radiologe jedes Bild (!) sprichwörtlich unter die Lupe nehmen. Das ist langwierig und meist sehr diffizil. Um den Radiologen ihre medizinische Aufgabe zu erleichtern, haben Informatiker der Technischen Universität Wien Verfahren entwickelt, die in kürzester Zeit einen Überblick über das erkrankte Gefäß bieten.



"Ein Mehr an Information aus den Bildern zu gewinnen, indem man die analysierten Daten visuell aufbereitet", so beschreibt Armin Kanitsar, Informatiker an der Technischen Universität Wien, das Wesen seiner Forschungsarbeit. Durch die verwendeten Darstellungsverfahren werden unerwünschte Verdeckungen mit anderen anatomischen Strukturen, wie beispielsweise den Knochen, verhindert. Ein Längsschnitt durch den Gefäßbaum zeigt das Gefäßlumen, d.h. den Druchmesser, in einem einzelnen Bild. Auf Knopfdruck lässt sich nun in Sekundenschnelle erkennen, wo sich die erkrankte Stelle befindet.

Die Praxisrelevanz der interdisziplinären Arbeit des jungen TU-Forschers wurde von Beginn an durch die intensive Kooperation mit dem medizinischen Projektpartner Prof. Dominik Fleischmann begründet. Die von Armin Kanitsar entwickelte Software ist nun bereits im AKH, an der Universität in Stanford und an weiteren Uni-Kliniken im Einsatz.

Gefäße virtuell aufklappen

Moderne bildgebende Verfahren und effiziente Algorithmen ermöglichen es, anatomische Strukturen virtuell dreidimensional zu rekonstruieren. Abstrakte Informationen, wie die Zentralachse eines Gefäßes, können dadurch berechnet werden. Basierend auf diesem zusätzlichen Wissen werden anwendungs-spezifische Darstellungsverfahren entwickelt.

Durch die Extraktion einer längsverlaufenden Schnittebene entlang der Zentralachse wird der Längsschnitt eines Gefäßes sichtbar. Wichtige Eigenschaften, wie der Durchmesser (das Gefäßlumen) und mögliche Anomalien (z. B. Verkalkungen), werden in dieser Schnittebene sichtbar. Dieses Verfahren wird als Curved Planar Reformation (CPR) bezeichnet.

Durch Armin Kanitsars Entwicklung können nun auch verzweigte Gefäßstrukturen, so genannte Gefäßbäume, in einer einzelnen Darstellung abgebildet werden. Da die anatomische Zusammengehörigkeit erhalten bleibt, ist die Identifizierung und Positionierung von Gefäßkrankheiten auf einen Blick möglich.

Nach Belieben drehen und wenden

Für die Darstellung von einzelnen Gefäßen stehen drei Basismethoden zur Verfügung, die unterschiedliche Eigenschaften wie Längentreue, Überdeckungsfreiheit und Raumbezug besitzen. Der medizinische Einsatz dieser Darstellung erfordert zusätzlich eine flexible Ausrichtung der Schnittebene. Anders ausgedrückt: man muss das Gefäß "drehen" können.

Auf diesen Basismethoden bauen die Multi-Path Methoden auf, welche die Darstellung von verzweigten Gefäßstrukturen ermöglichen. Um die Eigenschaft der Überdeckungsfreiheit - ein Gefäß verdeckt weder sich selbst, noch ein anderes Gefäß - auch für Gefäßbäume zu ermöglichen, wurde eine spezielle Multi-Path Methode entwickelt. Wie Tentakel eines Tintenfisches werden dabei die Blutgefäße automatisch entwirrt.

Für seine Forschungsarbeit "Curved Planar Reformation for Vessel Visualization", die unter der Leitung von Prof. Eduard Gröller als Dissertationsvater am Institut für Computergraphik und Algorithmen und bei der Firma TIANI Medgraph entstanden ist, wurde Armin Kanitsar von der TU Wien mit dem 13.000,- Euro dotierten "Ressel-Preis" ausgezeichnet. Neben dem persönlichen Erfolg der Auszeichnung für Armin Kanitsar werden diese Mittel einen weiteren Impuls für den Bereich der medizinischen Visualisierung an der TU Wien liefern.

Rückfragehinweis:

Dipl.-Ing. Dr. Armin Kanitsar
Technische Universität Wien
Institut für Computergraphik und Algorithmen
Favoritenstraße 9-11, A-1040 Wien
T: +43-1-58801-18658, Fax: -18698
mail: kanitsar@cg.

Mag. Karin Peter | idw
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Berichte zu: Algorithmus Gefäß Gefäßerkrankung

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften