Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hirnforscher belauschen die „innere Uhr“

23.05.2003


Diese Abbildung aus dem Originalartikel zeigt die anatomische Verteilung der Synchronisation, aufgenommen mit der Magnetenzephalographie (MEG)

Foto: Forschungszentrum Jülich


Auf dem Weg zu neuen Hirnschrittmachern für Parkinson-Kranke


Die Musik ist vorbei, doch gedankenverloren klopft mancher den Rhythmus noch ein Weilchen weiter. Was dabei im Kopf vorgeht, untersuchten Hirnforscher des Forschungszentrums Jülich und stellten fest: Obwohl die Tätigkeit die Gleiche bleibt, etwa das Trommeln der Finger auf der Tischplatte, ändert sich im Gehirn viel. Die beteiligten Hirnregionen verstärken sozusagen ihre Zusammenarbeit, wenn der äußere Taktgeber wegfällt, fand Professor Peter Tass heraus. Der Leiter der Arbeitsgruppe Magnetenzephalographie und Hirnschrittmacher am Forschungszentrum Jülich will diese Ergebnisse nutzen, um für neurologische Erkrankungen neue Therapien zu entwickeln. Sein Ziel ist ein verbesserter Hirnschrittmacher für Menschen, die an der Parkinson-Krankheit leiden.

Bei den Experimenten, über die das Forscherteam kürzlich in den "Physical Review Letters" (Bd. 90, Art.Nr. 88101, 2003) berichtete, ertönte zunächst ein rhythmischer Piepston. Die Versuchsteilnehmer wurden gebeten, mit dem Zeigefinger diesen Rhythmus mitzuklopfen. Nach einiger Zeit setzte das Piepsen aus. Die Versuchspersonen sollten nun im gleichen Takt weiterklopfen. Mit Hilfe eines im Forschungszentrum Jülich neu entwickelten Messverfahrens und leistungsstarker Supercomputer verfolgten die Wissenschaftler: Was passiert, wenn das Gehirn von der bloßen Nachahmung zum eigenständig erzeugten Rhythmus übergeht? "Wir konnten beim Wechsel von äußerem Takt auf inneren Rhythmus dramatische Veränderungen beobachten", berichtet Peter Tass. "Die beteiligten Hirnareale begannen plötzlich, in einem aufeinander abgestimmten Rhythmus zu arbeiten."


Von diesen Erkenntnissen könnten zum Beispiel Parkinson-Kranke profitieren. Gemeinsam mit dem Neurochirurgen Professor Volker Sturm von der Universitätsklinik Köln und Dr. Michael Schiek vom Zentrallabor für Elektronik am Forschungszentrum Jülich möchte Tass die Funktion so genannter Hirnschrittmacher verbessern. Das sind Elektroden im Hirn, mit denen sich die krankhaft überaktiven Hirnregionen und damit die typischen Bewegungsstörungen von Parkinson-Patienten ausschalten lassen. Das neue Messverfahren könnte helfen, neue Schrittmacher zu entwickeln, die nur bei Bedarf in die Arbeit des Gehirns eingreifen und auf milde Weise krankhafte Rhythmen desynchronisieren.

"Synchronisationstomographie" nennen die Forscher die neue Methode, mit der sich der Rhythmus der Hirnzellen besser messen lässt als mit allen bisher bekannten Techniken. Der Kopf der Versuchspersonen befindet sich während des Experiments unter einer helmförmigen Messapparatur mit 148 so genannten SQUID-Sensoren, die registrieren, was im Gehirn passiert. Das Verfahren baut auf der bekannten Magnetenzephalographie (MEG) auf. Dabei werden die schwachen Magnetfelder registriert, die stets vorhanden sind, wenn ein Strom fließt also auch bei jeder elektrischen Aktivität von Nervenzellen. Doch das MEG erfasst nur ungefähr, wo die Magnetfelder im Hirn entstehen. Andere Methoden, wie die funktionelle Magnetresonanztomographie, liefern zwar genauere räumliche "Karten" der Hirnaktivität. Doch zeigen sie nicht, worauf es den Forschern hier ankam den Rhythmus, in dem die einzelnen Hirnregionen arbeiten und wie sie ihren Rhythmus untereinander "abstimmen".

"Bei unserem neuen Verfahren rechnen wir von den Magnetfeldern, die wir im Gehirn messen, auf die elektrischen Ströme zurück", erläutert Tass, "und das für jedes Hirnvolumenelement mit einer Kantenlänge von wenigen Millimetern, im ganzen Gehirn und für jeden beobachteten Zeitpunkt. Dann bestimmen wir, ob und wie sich die Ströme in den einzelnen Elementen synchronisieren." Zu bewältigen sind diese umfangreichen Berechnungen nur mit Hilfe der im Forschungszentrum Jülich vorhandenen Supercomputer. So wird genau sichtbar, welche Regionen des Hirns an dieser Aufgabe beteiligt sind, und in welchem Rhythmus die jeweiligen Nervenzellen "feuern".

Ob angetrieben vom äußeren Metrum also dem rhythmischen Piepsen oder nach dem Umschalten auf den inneren Taktgeber: Im Wesentlichen arbeiteten in beiden Versuchsphasen die gleichen Regionen des Gehirns. Dazu zählen Bereiche der Hirnrinde, die für die Koordination von Bewegungen wichtig sind (sensomotorischer Kortex und prämotorischer Kortex) und ein Bereich, in dem die "innere Stimme", etwa das lautlose Sprechen, zu Hause ist (sekundärer auditorischer Kortex). Auch das Kleinhirn, unter anderem für das Abschätzen von Zeitspannen zuständig, war beteiligt. Beim Wechsel von äußerem auf inneren Rhythmus wurde zwar die Aktivität der Nervenzellen weder stärker noch schwächer die Amplitude blieb unverändert, wie die Wissenschaftler sagen. Doch das Verhalten der beteiligten Hirnareale zueinander veränderte sich schlagartig die Phasen wurden synchronisiert, formulieren die Forscher.

Zum einen eröffnen diese Arbeiten einen neuen Zugang zur "inneren Uhr" des Menschen. Zum anderen lassen sich mit Hilfe dieses neuen "Fensters zum Gehirn" Bewegungsstörungen bei Parkinson-Patienten und andere neurologische Erkrankungen besser verstehen, bei denen die Zusammenarbeit unterschiedlicher Hirngebiete gestört ist. Die Ergebnisse werden möglicherweise schon bald für die klinische Forschung und die bessere Diagnose und Behandlung solcher Störungen nützlich werden.

Dr. Renée Dillinger | Forschungszentrum Juelich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Berichte zu: Hirn Hirnschrittmacher Kortex Nervenzelle Parkinson

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Kokosöl verlängert Leben bei peroxisomalen Störungen
20.06.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Überdosis Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics