Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Lupe" für genaueren Blick in den Körper entwickelt

18.10.2002


Wissenschaftler der Uni Jena entdeckt Methode für schärfere MRT-Bilder


Dr. Jürgen Reichenbach von der Uni Jena am MRT



Mit bildgebenden Verfahren sind Mediziner inzwischen in der Lage, berührungsfrei immer feinere Strukturen im menschlichen Körper zu erkennen. PD Dr. Jürgen Reichenbach von der Friedrich-Schiller-Universität Jena hat jetzt eine Technik entwickelt und eingeführt, mit der die Bilder aus dem Körper noch schärfer zu erkennen sind. Die neue Methode, die so genannte BOLD-Angiographie (Blood Oxygen Level Dependent-Angiographie), wird im Jenaer Uni-Klinikum bei einigen Erkrankungen bereits routinemäßig angewendet. Dabei werden Blutgefäße durch die magnetischen Eigenschaften des Blutes sichtbar gemacht. Da die nicht-invasive Methode ohne Kontrastmittel und zusätzliche Aktivierung des Patienten auskommt, ist sie außerdem nebenwirkungsärmer.

... mehr zu:
»Gefäß »Hämoglobin »MRT »Vene »Voxel


Reichenbachs "Lupe" beruht auf einer einfachen Erkenntnis: Das Hämoglobin, der rote Blutfarbstoff, transportiert den Sauerstoff (O2), mit dem der Körper versorgt werden muss. Die mit O2 vollbeladenen Blutkörperchen kommen am Organ an, geben einen Teil der Sauerstoffbeladung im Organ ab und verlassen dieses mit wesentlich weniger O2. So kommt Hämoglobin durch die Arterien im Gehirn mit etwa 99 % Sauerstoff an und trägt nach dem Verlassen nur noch 50-60 % davon in den Venen. Das venöse Blut, das Desoxihämoglobin, trägt also einen wesentlich geringeren Sauerstoffanteil. Da Hämoglobin magnetisch ist, kann es mit einem Magnetresonanztomographen (MRT) gemessen werden. Dabei unterscheidet sich das gemessene Signal des Blutes je nach Menge des Sauerstoffs. Diese Erkenntnis hat Dr. Reichenbach genutzt, um mit dem MRT die Venen abzubilden. "Die Signale unterscheiden sich voneinander", hat der Physiker aus dem Institut für Diagnostische und Interventionelle Radiologie gemessen. "Dies macht es möglich, gezielt und hoch präzise kleinste venöse Gefäße, etwa im Gehirn, darzustellen", hat er nach über sechsjähriger Forschung nachgewiesen. Mit seiner MRT-Lupe werden Gefäße sichtbar gemacht, die gerade einmal 100 Mikrometer, also den zehnten Teil eines Millimeters, groß sind.

Reichenbachs Technik nutzt die magnetischen Eigenschaften des Blutes und nicht die Bewegung von Protonenspins, die üblicherweise in der MR-Angiographie gemessen wird. Dargestellt wird das ganze als Bild, das aus Millionen von kleinen Würfeln, so genannten Voxeln, zusammengesetzt ist. Das Signal jedes einzelnen Würfels wird gemessen. Dabei wird die unterschiedliche Materie - etwa in Form einer Vene - sichtbar und exakt darstellbar. "Der Kontrast zwischen Voxeln mit Gefäß und Voxeln ohne Gefäß hängt von der Sauerstoffbeladung ab", erläutert Reichenbach, der dafür eben - im Gegensatz zu den üblichen arteriellen MRT-Bildern - auf das venöse Blut setzt. "Die Methode lebt von der räumlichen Auflösung", erklärt der Jenaer Forscher - daher dauert sie mit acht bis 15 Minuten auch etwas länger.

Doch die Resultate rechtfertigen diese Verlängerung: Die gewonnen Bilder haben "eine räumlich sehr hohe Auflösung" - sie sind deutlich schärfer als Aufnahmen, die mit anderen Methoden gewonnen werden. Die zusätzliche Schärfe nutzen die Mediziner z. B. zur Diagnose von venösen Anomalien oder Hirnmetastasen. "Die Gefäßsituation innerhalb einer Metastase wird sichtbar gemacht", beschreibt der 40-jährige Wissenschaftler. In einem gerade bewilligten Forschungsprojekt sollen Gehirntumore mit der neuen Technik charakterisiert werden. Die Forscher wollen ermitteln, wann ein Tumor gut- oder bösartig ist. "Mit der hohen Auflösung lassen sich vielleicht Muster erkennen, um die Malignitätsgrade zu erkennen", hofft Reichenbach. Auch bei der Erforschung von Multipler Sklerose erwarten die Jenaer Wissenschaftler weiteren Erkenntnisgewinn durch die neue MRT-Lupe.

Doch selbst technisch ist Reichenbach längst nicht am Ende seiner Wünsche. Bisher werden die Bilder mittels eines MRT mit einer Feldstärke von 1,5 Tesla gewonnen. Mit einem 3-Tesla-System würden die Bilder noch klarer. Aber ein solches MRT wird frühestens im neuen Klinikum vorhanden sein, hofft Reichenbach auf eine Schärfung der Lupe. Von den amerikanischen Verhältnissen, wo einigen Forschern 7- und 8-Tesla-Maschinen zur Verfügung stehen, wagt er gar nicht zu träumen. Dass Reichenbachs Entdeckung aber auch in den USA geschätzt wird, zeigen die zahlreichen Förderungen und Auszeichnungen, die ihm dort und in Europa in den letzten Jahren verliehen wurden. Doch der "Prophet" wird langsam auch im eigenen Land anerkannt: In diesem Jahr erhielt Jürgen Reichenbach den Walter Friedrich-Preis der Deutschen Röntgengesellschaft.

Kontakt:
PD Dr. Jürgen Reichenbach
Institut für Diagnostische und Interventionelle Radiologie der Uni Jena
Bachstr. 18. 07743 Jena
Tel.: 03641 / 935372
Fax: 03641 / 936767
E-Mail: juergen.reichenbach@med.uni-jena.de

Axel Burchardt | idw

Weitere Berichte zu: Gefäß Hämoglobin MRT Vene Voxel

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

nachricht Tropenviren bald auch in Europa? Bayreuther Forscher untersuchen Folgen des Klimawandels
21.06.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie