Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse über Prozesse bei der Signalübertragung zwischen Nervenzellen

24.08.2000


Göttinger Max-Planck-Wissenschaftler messen die Kalziumempfindlichkeit bei der Fusion synaptischer Vesikel. Die Kommunikation zwischen Nervenzellen bildet die wesentliche Grundlage der Funktion unseres Gehirns. Zellen geben ihre Signale an andere Zellen weiter, so werden Sinneseindrücke verarbeitet und so entstehen Gedanken. Die Signalübertragung erfolgt dabei meist nur in einer Richtung, über sogenannte Synapsen. Einlaufende Signale bewirken, dass aus sogenannten Vesikeln Übertragungsstoffe ausgeschüttet werden, die in der nachgeschalteten Zelle ein neues Signal erzeugen. Göttinger Forscher aus der Abteilung des Nobelpreisträgers Erwin Neher konnten jetzt das intrazelluläre Kalziumionen-Signal bestimmen, das die Verschmelzung synaptischer Vesikel einleitet. Die Kenntnis von Zeitverlauf und Stärke dieses Signals trägt dazu bei, die Prozesse der Informationsübertragung zwischen Nervenzellen besser zu verstehen.
(Schneggenburger, R. andNeher, E. (2000). Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889-893.)

Das menschliche Gehirn besteht aus mehr als 100 Milliarden Nervenzellen, die in komplexen Netzwerken miteinander verschaltet sind und über hochspezialisierte Kontaktstellen (sogenannte "Synapsen") miteinander kommunizieren. Die schnelle und zuverlässige Signalübertragung zwischen den Nervenzellen ist die Grundlage eines funktionierenden Gehirns. Die Signalübertragung selbst ist ein komplizierter Vorgang mit vielen, zum Teil noch ungeklärten Einzelprozessen. Auf einen dieser Prozesse hat jetzt die Göttinger Forschergruppe etwas mehr Licht geworfen.

An der Synapse nähern sich zwei Nervenzellen bis auf ca. 20 nm (1 nm = 1 Nanometer = 1 Millionstel Millimeter) aneinander an. Um ein Signal zu übertragen, setzt die eine (die "aussendende") Zelle einen Transmitterstoff frei, der bei der anderen (der "empfangenden" Zelle) ein neues Signal erzeugt. Nach den gängigen Vorstellungen öffnet dabei eine elektrische Entladung ("Aktionspotential") in der aussendenden Zelle Ionenkanäle, durch die Kalziumionen (Ca2+) in das Zellinnere einströmen. Auf der Innenseite der Zellhülle bindet Ca2+ dann an einen noch nicht eindeutig identifizierten Ca2+ Rezeptorkomplex, wodurch die Verschmelzung kleiner (30-40 nm Durchmesser), in der Nervenendigung vorhandener, synaptischer Vesikel mit der Plasmamembran ausgelöst wird. Dadurch gelangt ein in den Vesikeln gespeicherter Überträgerstoff in den synaptischen Spalt. Der Überträgerstoff aktiviert Ionenkanäle in der empfangenden Nervenzelle und beeinflusst so ihr Membranpotential. Sind diese Änderungen groß genug, wird bei der "empfangenden" Zelle ein neues Aktionspotential ausgelöst.

Obwohl die Grundzüge dieser Signalkette bereits durch bahnbrechende Arbeiten, u.a. von Sir Bernhard Katz, in den 60er Jahren deutlich wurden, sind jedoch entscheidende Teilschritte der synaptischen Übertragung noch unbekannt. So ist bisher weder geklärt, aus welchem Grunde normalerweise nur ein kleiner Teil der insgesamt zur Verfügung stehenden Transmittervesikel mit der Membran verschmilzt, noch ist bekannt, welche Konzentration das Ca2+ in der Zelle erreichen muss, damit Vesikel überhaupt wirksam mit der Plasmamembran verschmelzen können.

Dieser Frage hat sich eine Arbeitsgruppe um Ralf Schneggenburger und Erwin Neher am Max-Planck-Institut für biophysikalische Chemie in Göttingen zugewandt. Sie benutzten dafür als Modellsystem eine spezielle synaptische Verbindung zwischen zwei Nervenzellen in der Hörbahn von Ratten. Diese Synapse, der nach dem Morphologen Held benannte "Heldsche Kelch" (oder "Calyx") zeichnet sich durch die ungewöhnliche Größe der "aussendenden" Nervenendigung aus. Dies ermöglichte es den Forschern, feine Glaspipetten direkt auf die Nervenendigung aufzusetzen und im so genannten "patch-clamp" Verfahren elektrische Ströme in der Nervenendigung zu registrieren. Außerdem wird bei diesem Verfahren eine Verbindung zwischen dem Pipetteninnern und dem Innern der Nervenendigung hergestellt, so dass die Wissenschaftler fluoreszierende Farbstoffe und Kalzium-bindende Substanzen in das Zellinnere einführen konnten (s. Abbildung). Durch rasche Photolyse der kalziumbindenden Substanz konnten sie so die Kalziumkonzentration im Innern der Nervenendigung räumlich gleichmäßig anheben und über die Fluoreszenz des Kalzium-Indikatorfarbstoffes direkt die für die Vesikelfusion relevante Ca2+ Konzentration bestimmen. Gleichzeitig wurden mit einer weiteren "patch-clamp" Pipette die Signale in der empfangenden Nervenzelle gemessen (s. Abbildung) und daraus die Menge der Transmitterfreisetzung, also die Rate der Vesikelverschmelzung, abgeschätzt.

Die mit dieser Methode erstmals erhaltenen Einblicke in das intrazelluläre Kalziumsignal für die Vesikelverschmelzung in Nervenzellen sind in vielerlei Hinsicht überraschend. In ihrer jetzt erschienenen Veröffentlichung in Nature berichten Schneggenburger und Neher, dass bereits bei intrazellulären Kalziumkonzentrationen von ca. 10 µM (Mikromol) ein erheblicher Teil der fusionsbereitenVesikeln zur Verschmelzung gelangt. Dieses Ergebnis, das zeitgleich von einer Arbeitsgruppe am Heidelberger Max-Planck-Institut für medizinische Forschung und an der Universität Amsterdam gefunden wurde (Bollmann, J.H., Sakmann, B. und Borst, J.G.G. (2000). Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289 , 953-957), zeigt dass die Kalzium-Empfindlichkeit der Vesikelfusion höher ist als aus vorhergehenden Studien erwartet wurde. Die jetzt gemessene Ca2+ Empfindlichkeit des Verschmelzungsprozesses wird es anderen Arbeitsgruppen erleichtern, die Gene zu identifizieren, die für den Ca2+ Rezeptorkomplex kodieren.

Schneggenburger und Neher fanden außerdem, dass während eines Aktionspotentials, also des natürlichen Stimulus in der aussendenen Zelle, nur ca. 10% aller fusionsbereiten Vesikel mit der Plasmamembran verschmelzen. Sie schlossen aus dieser relativ niedrigen Verschmelzungsrate, dass während eines Aktionspotentials nur ein kleiner Teil der Ca2+-Rezeptorkomplexe mit Kalzium abgesättigt wird. Nervenzellen behalten also einen Großteil ihrer sekretionsbereiten Vesikel als Reserve zurück, um auch auf ein zweites, nachfolgendes Aktionspotential noch mit effektiver Transmitterausschüttung reagieren zu können. Die Modifizierbarkeit der Übertragungsstärke an Synapsen wird von vielen Forschern derzeit als die Grundlage des Lernens angesehen. Die jetzt vorliegenden Ergebnisse erlauben einen ersten Einblick, wie das intrazelluläre Kalziumsignal für die Vesikelverschmelzung zur Modifizierbarkeit der synaptischen Übertragungsstärke beiträgt.

Für Rückfragen:


Dr. Ralf Schneggenburger, Max-Planck-Institut für biophysikalische Chemie, Abt. Membranbiophysik, 37070 Göttingen; Tel.: 0551 201 1632; Fax: 0551 201 1688, E-Mail: rschneg@gwdg.de
Prof. Dr. Erwin Neher, Max-Planck-Institut für biophysikalische Chemie, Abt. Membranbiophysik, 37070 Göttingen; Tel.: 0551 201 1675; Fax: 0551 201 1688, : eneher@gwdg.de

Diesen Text und ein Bild finden Sie auch im Internet unter dem URL http://www.mpibpc.gwdg.de/abteilungen/293/PR/00_04/kalzium.html

Weitere Informationen finden Sie im WWW:


Dr. Christoph R. Nothdurft |

Weitere Berichte zu: Nervenendigung Nervenzelle Signalübertragung Synapse Vesikel Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

nachricht Ein neuer Ansatz bei Hyperinsulinismus
18.09.2017 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie