Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erkenntnisse über Prozesse bei der Signalübertragung zwischen Nervenzellen

24.08.2000


Göttinger Max-Planck-Wissenschaftler messen die Kalziumempfindlichkeit bei der Fusion synaptischer Vesikel. Die Kommunikation zwischen Nervenzellen bildet die wesentliche Grundlage der Funktion unseres Gehirns. Zellen geben ihre Signale an andere Zellen weiter, so werden Sinneseindrücke verarbeitet und so entstehen Gedanken. Die Signalübertragung erfolgt dabei meist nur in einer Richtung, über sogenannte Synapsen. Einlaufende Signale bewirken, dass aus sogenannten Vesikeln Übertragungsstoffe ausgeschüttet werden, die in der nachgeschalteten Zelle ein neues Signal erzeugen. Göttinger Forscher aus der Abteilung des Nobelpreisträgers Erwin Neher konnten jetzt das intrazelluläre Kalziumionen-Signal bestimmen, das die Verschmelzung synaptischer Vesikel einleitet. Die Kenntnis von Zeitverlauf und Stärke dieses Signals trägt dazu bei, die Prozesse der Informationsübertragung zwischen Nervenzellen besser zu verstehen.
(Schneggenburger, R. andNeher, E. (2000). Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889-893.)

Das menschliche Gehirn besteht aus mehr als 100 Milliarden Nervenzellen, die in komplexen Netzwerken miteinander verschaltet sind und über hochspezialisierte Kontaktstellen (sogenannte "Synapsen") miteinander kommunizieren. Die schnelle und zuverlässige Signalübertragung zwischen den Nervenzellen ist die Grundlage eines funktionierenden Gehirns. Die Signalübertragung selbst ist ein komplizierter Vorgang mit vielen, zum Teil noch ungeklärten Einzelprozessen. Auf einen dieser Prozesse hat jetzt die Göttinger Forschergruppe etwas mehr Licht geworfen.

An der Synapse nähern sich zwei Nervenzellen bis auf ca. 20 nm (1 nm = 1 Nanometer = 1 Millionstel Millimeter) aneinander an. Um ein Signal zu übertragen, setzt die eine (die "aussendende") Zelle einen Transmitterstoff frei, der bei der anderen (der "empfangenden" Zelle) ein neues Signal erzeugt. Nach den gängigen Vorstellungen öffnet dabei eine elektrische Entladung ("Aktionspotential") in der aussendenden Zelle Ionenkanäle, durch die Kalziumionen (Ca2+) in das Zellinnere einströmen. Auf der Innenseite der Zellhülle bindet Ca2+ dann an einen noch nicht eindeutig identifizierten Ca2+ Rezeptorkomplex, wodurch die Verschmelzung kleiner (30-40 nm Durchmesser), in der Nervenendigung vorhandener, synaptischer Vesikel mit der Plasmamembran ausgelöst wird. Dadurch gelangt ein in den Vesikeln gespeicherter Überträgerstoff in den synaptischen Spalt. Der Überträgerstoff aktiviert Ionenkanäle in der empfangenden Nervenzelle und beeinflusst so ihr Membranpotential. Sind diese Änderungen groß genug, wird bei der "empfangenden" Zelle ein neues Aktionspotential ausgelöst.

Obwohl die Grundzüge dieser Signalkette bereits durch bahnbrechende Arbeiten, u.a. von Sir Bernhard Katz, in den 60er Jahren deutlich wurden, sind jedoch entscheidende Teilschritte der synaptischen Übertragung noch unbekannt. So ist bisher weder geklärt, aus welchem Grunde normalerweise nur ein kleiner Teil der insgesamt zur Verfügung stehenden Transmittervesikel mit der Membran verschmilzt, noch ist bekannt, welche Konzentration das Ca2+ in der Zelle erreichen muss, damit Vesikel überhaupt wirksam mit der Plasmamembran verschmelzen können.

Dieser Frage hat sich eine Arbeitsgruppe um Ralf Schneggenburger und Erwin Neher am Max-Planck-Institut für biophysikalische Chemie in Göttingen zugewandt. Sie benutzten dafür als Modellsystem eine spezielle synaptische Verbindung zwischen zwei Nervenzellen in der Hörbahn von Ratten. Diese Synapse, der nach dem Morphologen Held benannte "Heldsche Kelch" (oder "Calyx") zeichnet sich durch die ungewöhnliche Größe der "aussendenden" Nervenendigung aus. Dies ermöglichte es den Forschern, feine Glaspipetten direkt auf die Nervenendigung aufzusetzen und im so genannten "patch-clamp" Verfahren elektrische Ströme in der Nervenendigung zu registrieren. Außerdem wird bei diesem Verfahren eine Verbindung zwischen dem Pipetteninnern und dem Innern der Nervenendigung hergestellt, so dass die Wissenschaftler fluoreszierende Farbstoffe und Kalzium-bindende Substanzen in das Zellinnere einführen konnten (s. Abbildung). Durch rasche Photolyse der kalziumbindenden Substanz konnten sie so die Kalziumkonzentration im Innern der Nervenendigung räumlich gleichmäßig anheben und über die Fluoreszenz des Kalzium-Indikatorfarbstoffes direkt die für die Vesikelfusion relevante Ca2+ Konzentration bestimmen. Gleichzeitig wurden mit einer weiteren "patch-clamp" Pipette die Signale in der empfangenden Nervenzelle gemessen (s. Abbildung) und daraus die Menge der Transmitterfreisetzung, also die Rate der Vesikelverschmelzung, abgeschätzt.

Die mit dieser Methode erstmals erhaltenen Einblicke in das intrazelluläre Kalziumsignal für die Vesikelverschmelzung in Nervenzellen sind in vielerlei Hinsicht überraschend. In ihrer jetzt erschienenen Veröffentlichung in Nature berichten Schneggenburger und Neher, dass bereits bei intrazellulären Kalziumkonzentrationen von ca. 10 µM (Mikromol) ein erheblicher Teil der fusionsbereitenVesikeln zur Verschmelzung gelangt. Dieses Ergebnis, das zeitgleich von einer Arbeitsgruppe am Heidelberger Max-Planck-Institut für medizinische Forschung und an der Universität Amsterdam gefunden wurde (Bollmann, J.H., Sakmann, B. und Borst, J.G.G. (2000). Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289 , 953-957), zeigt dass die Kalzium-Empfindlichkeit der Vesikelfusion höher ist als aus vorhergehenden Studien erwartet wurde. Die jetzt gemessene Ca2+ Empfindlichkeit des Verschmelzungsprozesses wird es anderen Arbeitsgruppen erleichtern, die Gene zu identifizieren, die für den Ca2+ Rezeptorkomplex kodieren.

Schneggenburger und Neher fanden außerdem, dass während eines Aktionspotentials, also des natürlichen Stimulus in der aussendenen Zelle, nur ca. 10% aller fusionsbereiten Vesikel mit der Plasmamembran verschmelzen. Sie schlossen aus dieser relativ niedrigen Verschmelzungsrate, dass während eines Aktionspotentials nur ein kleiner Teil der Ca2+-Rezeptorkomplexe mit Kalzium abgesättigt wird. Nervenzellen behalten also einen Großteil ihrer sekretionsbereiten Vesikel als Reserve zurück, um auch auf ein zweites, nachfolgendes Aktionspotential noch mit effektiver Transmitterausschüttung reagieren zu können. Die Modifizierbarkeit der Übertragungsstärke an Synapsen wird von vielen Forschern derzeit als die Grundlage des Lernens angesehen. Die jetzt vorliegenden Ergebnisse erlauben einen ersten Einblick, wie das intrazelluläre Kalziumsignal für die Vesikelverschmelzung zur Modifizierbarkeit der synaptischen Übertragungsstärke beiträgt.

Für Rückfragen:


Dr. Ralf Schneggenburger, Max-Planck-Institut für biophysikalische Chemie, Abt. Membranbiophysik, 37070 Göttingen; Tel.: 0551 201 1632; Fax: 0551 201 1688, E-Mail: rschneg@gwdg.de
Prof. Dr. Erwin Neher, Max-Planck-Institut für biophysikalische Chemie, Abt. Membranbiophysik, 37070 Göttingen; Tel.: 0551 201 1675; Fax: 0551 201 1688, : eneher@gwdg.de

Diesen Text und ein Bild finden Sie auch im Internet unter dem URL http://www.mpibpc.gwdg.de/abteilungen/293/PR/00_04/kalzium.html

Weitere Informationen finden Sie im WWW:


Dr. Christoph R. Nothdurft |

Weitere Berichte zu: Nervenendigung Nervenzelle Signalübertragung Synapse Vesikel Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Studie für Patienten mit Prostatakrebs: Einteilung in genomische Gruppen soll Therapie präzisieren

21.08.2017 | Interdisziplinäre Forschung

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz