Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Licht gestreut: Schnelle Methode bestimmt Phasenverhalten von Mischungen

10.12.2015

Mehrkomponentige Materialien wie beispielsweise Polymermischungen zu entwickeln, war bislang mit einem beträchtlichen Aufwand verbunden. Denn dazu muss das Mischungsverhalten in Abhängigkeit von der Temperatur bekannt sein und die nötigen Phasendiagramme sind zu ermitteln. Das bedeutet: Es muss eine Vielzahl unterschiedlicher Mischungen präpariert und für jede dieser Mischungen die Phasenübergangstemperatur bestimmt werden.

Um dieses umfangreiche Prozedere zu vereinfachen und zu beschleunigen, haben das Fraunhofer LBF und die Universität Jena eine Hochdurchsatz-Methode zur schnellen Bestimmung des Phasenverhaltens von Polymermischungen entwickelt.


Abb. 1: Messaufbau (schematisch).

Grafik: Fraunhofer LBF


Abb. 2: Streumuster von unterschiedlichen Mischungen bei identischer Temperatur.

Grafik: Farunhofer LBF.


Abb. 3: Beispiel eines Phasendiagramms (Schema).


Abb. 4: Zusammenhang von Streumuster und Domänenmorphologie.

Initiiert hatte das Projekt der Reifenhersteller Michelin beim Dutch Polymer Institute (DPI). Die entwickelte Methode war zunächst für Gummimischungen ausgelegt, ist jedoch weit darüber hinaus anwendbar. Das System zur Hochdurchsatz-Kleinwinkellichtstreuung wurde für den Einsatz in Industrielabors entwickelt und lässt sich auf besondere Bedürfnisse der Anwender konfigurieren.

Im Rahmen des Forschungsvorhabens entwickelte das Fraunhofer LBF eine Hochdurchsatz-Lichtstreuanlage sowie die dazugehörige Mess- und Auswertesoftware, mit der sich die Phasenübergangstemperaturen einer sehr großen Probenzahl parallel ermitteln lassen. Anlage und Messmethodik stehen für Kunden am LBF zur Verfügung. Die Universität Jena beschäftigte sich mit der Probenpräparation mittels Synthese- und Pipettierrobotern.

Hochdurchsatz-Methode zur Aufnahme von Phasendiagrammen

Die Proben befinden sich in der neuartigen Anlage in einer Mikrotiterplatte mit bis zu 96 Näpfchen oder werden auf einem flachen Glasträger appliziert. In einem Ofen mit Inertgasspülung lassen sich auf- und absteigende Temperaturrampen mit den Proben fahren.

Phasenumwandlungen wie Mischen und Entmischen, aber auch Kristallisationsvorgänge, werden sehr sensitiv mittels Kleinwinkellichtstreuung festgestellt. Hierfür sind in den Ofenwänden Quarzglasfenster gegenüber der Unter- und Oberseite der Titerplatte eingelassen.

Als Lichtquelle dient ein Laser, und eine spezielle Detektionsoptik erfasst das Streumuster. Durch die Bewegung des Lasers und der Detektionsoptik werden die Näpfchen der Titerplatte kontinuierlich nacheinander abgerastert. In Abbildung 1 ist die Anlage schematisch dargestellt.

Aufnahme von Phasendiagrammen durch Kleinwinkel-Lichtstreuung

Die Streumuster von unterschiedlich zusammengesetzten Polymermischungen bei derselben Temperatur zeigt beispielhaft Abbildung 2. Das Streumuster in der obersten Zeile links ist kaum ausgeprägt und entspricht dem einer homogen gemischten Probe. Das stark ausgeprägte Streumuster in der obersten Zeile rechts ist typisch für eine entmischte Probe.

Das mittlere Streumuster weist eine nur geringe Intensität auf: Die dazugehörende Probe ist noch nahezu homogen und beginnt sich gerade zu entmischen. Die zugehörige Temperatur kann als Phasenseparationstemperatur dieser Proben identifiziert werden. Aus den während einer Temperaturrampe für Mischungen verschiedener Zusammensetzungen aufgenommenen Lichtstreubildern lässt sich schließlich ein Phasendiagramm erstellen, wie es schematisch Abbildung 3 zeigt.

Aus der Intensitätsverteilung im Streumuster lässt sich darüber hinaus auf die Phasenstruktur schließen: Ein Streumuster mit radialer Intensitätsverteilung mit vom Zentrum aus abfallender Intensität weist auf einzelne runde Tropfen hin, während eine ringförmige Intensitätsverteilung eine co-kontinuierliche Struktur wiederspiegelt (Abbildung 4).

Anwendungen vom Klebstoff bis zum Lebensmittel

Die neue Methode ist nicht nur für Polymersysteme anwendbar. Auch andere Materialklassen beziehungsweise Formulierungen zeigen Temperatur- und zusammensetzungsabhängiges Mischungsverhalten. Dazu gehören Rezepturen für Klebstoffe, Lacke oder Beschichtungen. Mögliche weitere Anwendungen sehen die LBF-Wissenschaftler in der Bestimmung des Phasenverhaltens bei der Entwicklung von Wirkstoffformulierungen im pharmazeutischen Bereich oder von Mischungen in der Kosmetik- und Lebensmittelindustrie. Auch Anwendungen in der medizinischen Diagnostik sind denkbar.

Neben Phasendiagrammen lässt sich die Ausbildung von festen Phasen aus einem anfänglich flüssigen System beobachten. Dies findet zum Beispiel während der Trocknung von Lacken oder während der Kristallisation aus der Lösung oder Schmelze statt.

Über den Bereich Kunststoffe des Fraunhofer LBF

Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoff-Institut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über den Werkstoff, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen. Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie Thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.

Weitere Informationen:

http://www.lbf.fraunhofer.de/de/presse/presseinformationen/phasenverhalten-polym...
http://www.lbf.fraunhofer.de/phasenverhaltenpolymermischungen

Anke Zeidler-Finsel | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops