Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Ilmenau erschließt die dritte Dimension im Nanobereich

30.01.2012
Die Technische Universität Ilmenau wird die dritte Dimension von Nanostrukturen erschließen, also von Strukturen, die kleiner sind als ein 10.000stel Millimeter.

Am Zentrum für Innovationskompetenz im Institut für Mikro- und Nanotechnologien IMN MacroNano® der Universität hat eine neue Nachwuchsforschergruppe unter der Leitung von Prof. Yong Lei am 1. Januar ihre Arbeit aufgenommen.


Dreidimensionale Nanostrukturen im Visier der TU Ilmenau. Foto: TU Ilmenau

Forschungsziel: Dreidimensionale Nanostrukturen aus unterschiedlichen Materialien herzustellen.

Die neue Forschergruppe „Dreidimensionale Nanostrukturierung zur Realisierung von Hochleistungs-Nano-Bauelementen“ wird wesentlich dazu beitragen, die im Institut angestrebte Mikro-Nano-Integration zu realisieren, also kleinste Nanobauteile in Mikrosysteme zu integrieren. Mikrosysteme sind im Alltag weit verbreitet – im Auto, in Computern und in zahllosen weiteren Anwendungen des täglichen Lebens. Durch die Nutzung von Eigenschaften von Nanostrukturen können sie mit völlig neuen Funktionalitäten ausgestattet werden, beispielsweise können hoch effiziente grüne Energiespeicher und Leistungsversorger für die eMobilität und Hochleistungsdatenspeicher für Computer und portable elektronische Geräte entwickelt werden.

Weitere Anwendungsgebiete sind Lebenswissenschaften, deren Technologien Gesundheit und Wohlbefinden des Menschen zum Ziel haben, und die Photonik, also die Entwicklung optischer Technologien für die Speicherung, Verarbeitung und Übertragung von Informationen und zur Verbesserung der Energie-Effizienz von Mikrosystemen. Mit der neuen Nachwuchsforschergruppe stärkt das IMN MacroNano® seine Position als eine der führenden Forschungseinrichtungen im Bereich der Mikro-Nano-Integration in Deutschland.

Die 3D-Nanostrukturierung, die in Ilmenau künftig unter Hochdruck betrieben wird, ist ein wichtiger Schritt zur Realisierung von Nanobauelementen der nächsten Generation. Die innovativen Systeme werden höchst leistungsfähig und serien- und industrietauglich sein. Zunächst werden die Forscher vier ausgewählte Nanobauelemente realisieren: Eine monolithische Tandem-Solar-Brennstoffzelle, die effizient Wasser in Wasserstoff und Sauerstoff spaltet. Diese neue Technologie dient dazu, grüne und erneuerbare Energie herzustellen; einen Super-Kondensator mit hoher Energie- und Leistungsdichte, der als Energiespeichermedium Batterien in spezifischen Anwendungen, wie zum Beispiel Autos, unterstützen oder ersetzen soll; einen hochsensitiven optischen Bio-Detektor, der zur schnellen und sensitiven Detektion von Biomolekülen bei der Erkennung und Überwachung von Krankheiten und zum tieferen Verständnis biologischer Prozesse dienen wird; und ein integriertes organisches nichtflüchtiges Speichermedium, das als Flashspeicher ein vielversprechendes mobiles elektronisches Bauelement für Anwendungen in Computern und tragbaren elektronischen Geräten wie Smartphones und Tablet-PCs darstellt. Die Universität erwartet, dass die neuen Forschungsarbeiten beachtliche Auswirkungen auf dem Gebiet der Nanotechnologie und der Nanobauelemente haben werden und eine Brücke zwischen laborbasierter Nanotechnologie und Anwendungen für die Massenproduktion bilden können.

Die Forschergruppe wird vom Bundesministerium für Bildung und Forschung mit knapp 2,7 Millionen Euro für fünf Jahre im Rahmen des Programms „Zentren für Innovationskompetenz” (ZIK) gefördert. Dabei werden an Hochschulen und Forschungseinrichtungen in Ostdeutschland herausragende Forschungsansätze zu Zentren mit einer exzellenten und international wettbewerbsfähigen Forschung für zukunftsträchtige Hochtechnologiemärkte ausgebaut. Um die ambitionierten Forschungsarbeiten auf dem Gebiet der 3D-Nanostrukturierung zu ermöglichen, wird die Forschergruppe zusätzlich durch das Bundesforschungsministerium mit 690.000 Euro und durch das Land Thüringen mit rund 1,8 Millionen Euro aus Landesmitteln und aus Mitteln des Europäischen Fonds für Regionale Entwicklung (EFRE) für die technologische Ausstattung und den Ausbau der Geräteinfrastruktur unterstützt.

Die Forschergruppe wird von dem 41-jährigen Prof. Yong Lei geleitet, einem der führenden Wissenschaftler auf dem Gebiet der dreidimensionalen Nanostrukturierung und der funktionalen Nanobauelemente. 2008 wurde er mit dem Nachwuchsförderpreis der Westfälischen Wilhelms-Universität Münster ausgezeichnet, wo er zuletzt als Juniorprofessor arbeitete. Prof. Lei bringt weitere Projekte mit an die TU Ilmenau, darunter die renommierte Förderung des European Research Councils und ein Projekt der VolkswagenStiftung. Neben seiner Forschungstätigkeit wird er als Fachgebietsleiter und Universitätsprofessor im Institut für Physik der Fakultät für Mathematik und Naturwissenschaften Studentinnen und Studenten unterrichten.

Kontakt:
Prof. Dr. Yong Lei
Fachgebiet Dreidimensionale Nanostrukturierung
Institut für Physik & IMN (ZIK)
Telefon: 03677 69-3748, -3672, -3670
Email: yong.lei@tu-ilmenau.de

Bettina Wegner | idw
Weitere Informationen:
http://www.tu-ilmenau.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise