Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spröder Werkstoff gewinnt Zähigkeit - wolframfaserverstärktes Wolfram

27.05.2013
Neuartiger Werkstoff für Fusionskraftwerk / Verbundmaterial mit optimierten Eigenschaften

Für stark belastete Partien des Gefäßes, das ein heißes Fusionsplasma umgibt, ist Wolfram - das Metall mit dem höchsten Schmelzpunkt - besonders geeignet.


Querschnitt durch den neuartigen Wolfram-Verbundwerkstoff. Das Mikroskop zeigt die kreisförmigen Querschnitte haarfeiner Wolframdrähte, die dicht gepackt in eine Wolfram-Matrix eingebettet sind. (Foto: IPP, Johann Riesch)

Nachteilig ist jedoch die hohe Sprödigkeit des Materials, das bei Belastung brüchig und schadensanfällig wird. Im Max-Planck-Institut für Plasmaphysik (IPP) in Garching wurde nun ein neuartiger, widerstandsfähiger Verbundwerkstoff entwickelt: wolframfaserverstärktes Wolfram.

Er besteht aus homogenem Wolfram, in das beschichtete Wolframdrähte eingebettet sind. Eine Machbarkeitsstudie zeigt jetzt die prinzipielle Eignung des neuen Verbundmaterials.

Ziel der Arbeiten im IPP ist die Entwicklung eines Kraftwerks, das - ähnlich wie die Sonne - Energie aus der Verschmelzung von Atomkernen gewinnt. Brennstoff ist ein dünnes Wasserstoff-Plasma. Zum Zünden des Fusionsfeuers muss das Plasma in Magnetfeldern eingeschlossen und auf hohe Temperatur aufgeheizt werden. Im Zentrum werden über 100 Millionen Grad erreicht.

Für Bauteile, die direkt mit dem heißen Plasma in Kontakt kommen, ist das Metall Wolfram ein vielversprechendes Material. Dies haben umfangreiche Untersuchungen im IPP gezeigt (siehe Presseinfo 3/2010). Ein bisher ungelöstes Problem allerdings ist die Versprödung des Materials:

Unter Kraftwerksbedingungen verliert Wolfram seine Zähigkeit. Einer punktuellen Belastung - Zug, Dehnung oder Druck - kann es nicht durch leichtes Nachgeben ausweichen. Stattdessen bilden sich Risse: Die Bauteile reagieren deshalb sehr empfindlich auf eine lokale Überlast.

Im IPP suchte man deshalb nach Strukturen, die eine lokal auftretende Spannung verteilen können. Vorbild waren faserverstärkte Keramiken: Zum Beispiel wird das spröde Siliziumcarbid nach Verstärken mit Fasern aus Siliziumcarbid fünfmal zäher als zuvor. Nach einigen Vorstudien sollte der IPP-Wissenschaftler Johann Riesch untersuchen, ob ähnliches auch bei dem Metall Wolfram funktionieren kann.

Im ersten Schritt war das neuartige Material herzustellen. Eine Grundmasse aus Wolfram musste mit beschichteten Langfasern aus haardünn gezogenem Wolframdraht verstärkt werden. Die Drähte - eigentlich gedacht als Leuchtfaden für Glühbirnen - lieferte die Osram GmbH. Für ihre Beschichtung wurde im IPP mit unterschiedlichen Materialien experimentiert, darunter Erbium-Oxid. Komplett ummantelt, wurden die Wolframfasern dann dicht nebeneinander gepackt, entweder parallel oder miteinander verwebt. Um schließlich die Drahtzwischenräume mit Wolfram auszufüllen, entwickelten Johann Riesch und seine Mitarbeiter zusammen mit dem englischen Industriepartner Archer Technicoat Ltd. ein neues Verfahren.

Während Wolfram-Werkstücke üblicherweise aus Metallpulver bei hoher Temperatur und hohem Druck zusammengepresst werden, wurde für das Verbundmaterial eine sanftere Methode gefunden: Über einen chemischen Prozess wird das Wolfram bei moderaten Temperaturen aus einer gasförmigen Verbindung auf den Drähten abgeschieden. Damit war es erstmals gelungen, wolframfaserverstärktes Wolfram herzustellen - mit dem gewünschten Ergebnis: Die Bruchzähigkeit des neuen Verbundmaterials hatte sich bereits in den ersten Versuchen im Vergleich zu faserlosem Wolfram verdreifacht.

Im zweiten Schritt wurde untersucht, wie dies funktioniert: Als entscheidend erwies sich, dass die Fasern einen Riss in der Grundmasse überbrücken und die lokal einwirkende Energie im Material verteilen können. Dazu müssen die Grenzflächen zwischen Faser und Wolfram-Grundmasse einerseits schwach genug sein, um bei Rissbildung nachzugeben, und anderseits stark genug, um die Kraft zwischen Faser und Grundmasse übertragen zu können. In Biegeversuchen lies sich dies per Röntgen-Mikrotomographie direkt beobachten. Die prinzipielle Funktionsweise des Werkstoffs war damit gezeigt.

Maßgebend für seine Brauchbarkeit ist jedoch, dass die gesteigerte Zähigkeit beim Einsatz erhalten bleibt. Um dies zu prüfen, untersuchte Johann Riesch Proben, die zuvor durch Wärmebehandlung versprödet worden waren. Durchleuchtet von Synchrotronstrahlung oder unter dem Elektronenmikroskop bestätigten sich beim Ziehen und Biegen der Proben auch in diesem Fall die verbesserten Materialeigenschaften: Wenn die Wolfram-Grundmasse unter Belastung versagt, können die Fasern den entstehenden Riss überbrücken und damit aufhalten.

Die Grundlagen für Verständnis und Herstellung des neuartigen Werkstoffs sind damit gelegt. Nun will man Proben unter verbesserten Prozessbedingungen und mit optimierten Grenzflächen produzieren - die Voraussetzung für die Fertigung in größerem Maßstab. Auch außerhalb der Fusionsforschung könnte das neue Material auf Interesse stoßen.

Isabella Milch

Max-Planck-Institut fuer Plasmaphysik (IPP)
Leiterin Presse- und Oeffentlichkeitsarbeit
Boltzmannstraße 2
D-85748 Garching
Tel. 089-3299-1317
Fax 089-3299-2622

Isabella Milch | Max-Planck-Institut
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics