Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spannung in der Forschung: Piezoelektrische Effekte zur Unterdrückung von Materialspannungen

30.03.2015

Das Auftreten elektrischer Spannungen bei Verformungen zeichnet piezoelektrische Materialien aus – ein Effekt, der sich auch für die Vermeidung von mechanischen Spannungen in speziellen Materialien nutzen lässt. Ein aktuelles Projekt des Wissenschaftsfonds FWF leistet jetzt einen grundlegenden Beitrag zur Optimierung dieser "intelligenten Materialien".

Hohe mechanische Spannungen verkürzen das Leben eines Bauteils. Das gilt zumindest für alle Arten von Materialien. Deren Lebensdauer hängt ganz entscheidend von ihrer mechanischen Beanspruchung ab. Dabei zehren vor allem Spannungen in Kombination mit Schwingungen an der Haltbarkeit.


Die Entladung elektrischer Spannung birgt Potenzial für spannende Materialforschung.

© Wikimedia Commons / Stefan.nettesheim

Seit einigen Jahren gibt es nun für spezielle Einsatzbereiche intelligente Materialien, die solchen Ursachen aktiv entgegenwirken können. Dazu greift man tief in die physikalische Trickkiste: Der sogenannte piezoelektrische Effekt, also der Aufbau einer elektrischen Spannung durch Verformung, kann genutzt werden, um diese Kräfte aktiv zu unterdrücken.

Doch dabei unterliegen auch die piezoelektrischen Materialien Kräften, die ihre Haltbarkeit mindern – das zu ändern hat sich Jürgen Schöftner zur Aufgabe gemacht.

VON SCHWINGUNGEN & SPANNUNGEN

Wesentlich für die Arbeit von Schöftner ist dabei eine Besonderheit von piezoelektrischen Materialien: "Piezoelektrische Materialien zeichnen sich durch eine spezielle Kombination physikalischer Eigenschaften aus. Die führt dazu, dass selbst dann mechanische Spannungserhöhungen im Material auftreten können, wenn eine – durch externe Kräfte bewirkte – Deformation des Materials bereits abgeklungen ist."

Solche lokalen Spannungsüberhöhungen wirken sich negativ auf die Haltbarkeit des Materials aus, und es ist Schöftners Bestreben, diese zu mindern. Doch dabei betritt er wissenschaftliches Neuland, wie er erklärt: "Die Forschung der letzten Jahre in diesem als 'Structural Control' bezeichneten Bereich hat sich vor allem mit der Reduktion von Bauteilschwingungen und Deformationen beschäftigt. Die hat man auch gut in den Griff bekommen. Aber Erkenntnisse über die Vermeidung von Schwingungen helfen nicht weiter, wenn es um die Vermeidung von mechanischen Spannungen geht. Hier sind neue Methoden notwendig. Deren Grundlagen werden wir nun erarbeiten."

Am Beginn seines Projekts steht für Schöftner dabei die Analyse der sogenannten konstitutiven Beziehung von Piezoelektrika. Diese erlaubt es, Formulierungen für eine mögliche Spannungsunterdrückung im dreidimensionalen Raum abzuleiten. Weiters wird er dann auch die grundlegenden Spannungsbewegungsgleichungen kalkulieren. Ziel dieser grundlegenden Berechnungen ist es, praktikable Konzepte zur Spannungsunterdrückung für sogenannte "schlanke Bauteile" zu finden.

PASSIV GEDÄMPFT – AKTIV ENERGIE GEWONNEN

Doch Schöftner schaut in seinem Projekt noch weiter in die Zukunft: "Tatsächlich können piezoelektrische Materialien sogar zur Gewinnung von Energie genutzt werden. Die kinetische Energie bzw. die Bewegungsenergie eines Bauteils wird in elektrische Oszillationen umgewandelt und somit neutralisiert. Ist das piezoelektrische Material nun in ein elektrisches Netzwerk eingebunden, dann kann die durch mechanische Verformung erzeugte Spannung auch in ein geeignetes elektrisches Speichermedium überführt werden."

Das langfristige Ziel ist es, ein elektrisches Netzwerk für eine bestimmte schwingende piezoelektrische Konstruktion zu entwerfen, das je nach Bedarf eine mechanische Spannung unter ein gewisses Niveau regelt oder die Schwingungsenergie durch Speicherung in elektrische Energie umwandelt. Dazu wäre eine intelligente Schaltung notwendig, die aus einer aktiven Schaltung für die Spannungsregelung und einer passiven für die Energiegewinnung besteht.

Im Idealfall würde dann ab einer kritischen Spannung die mechanische Spannung geregelt – andernfalls würde Schwingungsenergie in nutzbare elektrische Energie umgewandelt. Doch bevor solche Systeme Realität werden gilt es, grundlegende Hausaufgaben zu machen. So befasst sich Schöftner in seinem Projekt auch mit der optimalen Verteilung der Elektroden, des Widerstandbelags und des elektrischen Netzwerks in einem solchen System.

"Das Potenzial in solchen passiv gedämpften Materialien ist enorm – doch bevor dieses wirklich genutzt werden kann, müssen grundlegende Erkenntnisse zur Optimierung dieser Materialen gewonnen werden. Genau das machen wir in diesem Projekt des FWF", ergänzt Schöftner.

Jürgen Schöftner ist seit 2011 wissenschaftlicher Mitarbeiter am Institut für Technische Mechanik an der Johannes Kepler Universität Linz. Er gilt als Experte bei der Modellbildung und Regelung von mechatronischen Problemstellungen.

Wissenschaftlicher Kontakt:
DI Dr. Jürgen Schöftner
Institut für Technische Mechanik
Johannes Kepler Universität Linz
Altenbergerstraße 69
4040 Linz
T +43 / 732 / 2468 - 6314
E juergen.schoeftner@jku.at
W http://www.jku.at

Der Wissenschaftsfonds FWF:
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E marc.seumenicht@fwf.ac.at
W http://www.fwf.ac.at

Redaktion & Aussendung:
PR&D – Public Relations für Forschung & Bildung Mariannengasse 8
1090 Wien
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Marc Seumenicht | PR&D - Public Relations für Forschung & Bildung
Weitere Informationen:
http://www.fwf.ac.at/de/wissenschaft-konkret/projektvorstellungen/2015/pv2015-kw14

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie