Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spannung in der Forschung: Piezoelektrische Effekte zur Unterdrückung von Materialspannungen

30.03.2015

Das Auftreten elektrischer Spannungen bei Verformungen zeichnet piezoelektrische Materialien aus – ein Effekt, der sich auch für die Vermeidung von mechanischen Spannungen in speziellen Materialien nutzen lässt. Ein aktuelles Projekt des Wissenschaftsfonds FWF leistet jetzt einen grundlegenden Beitrag zur Optimierung dieser "intelligenten Materialien".

Hohe mechanische Spannungen verkürzen das Leben eines Bauteils. Das gilt zumindest für alle Arten von Materialien. Deren Lebensdauer hängt ganz entscheidend von ihrer mechanischen Beanspruchung ab. Dabei zehren vor allem Spannungen in Kombination mit Schwingungen an der Haltbarkeit.


Die Entladung elektrischer Spannung birgt Potenzial für spannende Materialforschung.

© Wikimedia Commons / Stefan.nettesheim

Seit einigen Jahren gibt es nun für spezielle Einsatzbereiche intelligente Materialien, die solchen Ursachen aktiv entgegenwirken können. Dazu greift man tief in die physikalische Trickkiste: Der sogenannte piezoelektrische Effekt, also der Aufbau einer elektrischen Spannung durch Verformung, kann genutzt werden, um diese Kräfte aktiv zu unterdrücken.

Doch dabei unterliegen auch die piezoelektrischen Materialien Kräften, die ihre Haltbarkeit mindern – das zu ändern hat sich Jürgen Schöftner zur Aufgabe gemacht.

VON SCHWINGUNGEN & SPANNUNGEN

Wesentlich für die Arbeit von Schöftner ist dabei eine Besonderheit von piezoelektrischen Materialien: "Piezoelektrische Materialien zeichnen sich durch eine spezielle Kombination physikalischer Eigenschaften aus. Die führt dazu, dass selbst dann mechanische Spannungserhöhungen im Material auftreten können, wenn eine – durch externe Kräfte bewirkte – Deformation des Materials bereits abgeklungen ist."

Solche lokalen Spannungsüberhöhungen wirken sich negativ auf die Haltbarkeit des Materials aus, und es ist Schöftners Bestreben, diese zu mindern. Doch dabei betritt er wissenschaftliches Neuland, wie er erklärt: "Die Forschung der letzten Jahre in diesem als 'Structural Control' bezeichneten Bereich hat sich vor allem mit der Reduktion von Bauteilschwingungen und Deformationen beschäftigt. Die hat man auch gut in den Griff bekommen. Aber Erkenntnisse über die Vermeidung von Schwingungen helfen nicht weiter, wenn es um die Vermeidung von mechanischen Spannungen geht. Hier sind neue Methoden notwendig. Deren Grundlagen werden wir nun erarbeiten."

Am Beginn seines Projekts steht für Schöftner dabei die Analyse der sogenannten konstitutiven Beziehung von Piezoelektrika. Diese erlaubt es, Formulierungen für eine mögliche Spannungsunterdrückung im dreidimensionalen Raum abzuleiten. Weiters wird er dann auch die grundlegenden Spannungsbewegungsgleichungen kalkulieren. Ziel dieser grundlegenden Berechnungen ist es, praktikable Konzepte zur Spannungsunterdrückung für sogenannte "schlanke Bauteile" zu finden.

PASSIV GEDÄMPFT – AKTIV ENERGIE GEWONNEN

Doch Schöftner schaut in seinem Projekt noch weiter in die Zukunft: "Tatsächlich können piezoelektrische Materialien sogar zur Gewinnung von Energie genutzt werden. Die kinetische Energie bzw. die Bewegungsenergie eines Bauteils wird in elektrische Oszillationen umgewandelt und somit neutralisiert. Ist das piezoelektrische Material nun in ein elektrisches Netzwerk eingebunden, dann kann die durch mechanische Verformung erzeugte Spannung auch in ein geeignetes elektrisches Speichermedium überführt werden."

Das langfristige Ziel ist es, ein elektrisches Netzwerk für eine bestimmte schwingende piezoelektrische Konstruktion zu entwerfen, das je nach Bedarf eine mechanische Spannung unter ein gewisses Niveau regelt oder die Schwingungsenergie durch Speicherung in elektrische Energie umwandelt. Dazu wäre eine intelligente Schaltung notwendig, die aus einer aktiven Schaltung für die Spannungsregelung und einer passiven für die Energiegewinnung besteht.

Im Idealfall würde dann ab einer kritischen Spannung die mechanische Spannung geregelt – andernfalls würde Schwingungsenergie in nutzbare elektrische Energie umgewandelt. Doch bevor solche Systeme Realität werden gilt es, grundlegende Hausaufgaben zu machen. So befasst sich Schöftner in seinem Projekt auch mit der optimalen Verteilung der Elektroden, des Widerstandbelags und des elektrischen Netzwerks in einem solchen System.

"Das Potenzial in solchen passiv gedämpften Materialien ist enorm – doch bevor dieses wirklich genutzt werden kann, müssen grundlegende Erkenntnisse zur Optimierung dieser Materialen gewonnen werden. Genau das machen wir in diesem Projekt des FWF", ergänzt Schöftner.

Jürgen Schöftner ist seit 2011 wissenschaftlicher Mitarbeiter am Institut für Technische Mechanik an der Johannes Kepler Universität Linz. Er gilt als Experte bei der Modellbildung und Regelung von mechatronischen Problemstellungen.

Wissenschaftlicher Kontakt:
DI Dr. Jürgen Schöftner
Institut für Technische Mechanik
Johannes Kepler Universität Linz
Altenbergerstraße 69
4040 Linz
T +43 / 732 / 2468 - 6314
E juergen.schoeftner@jku.at
W http://www.jku.at

Der Wissenschaftsfonds FWF:
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E marc.seumenicht@fwf.ac.at
W http://www.fwf.ac.at

Redaktion & Aussendung:
PR&D – Public Relations für Forschung & Bildung Mariannengasse 8
1090 Wien
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Marc Seumenicht | PR&D - Public Relations für Forschung & Bildung
Weitere Informationen:
http://www.fwf.ac.at/de/wissenschaft-konkret/projektvorstellungen/2015/pv2015-kw14

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences