Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarzellen beim Wachsen zusehen

27.06.2013
Erstmals ist es Wissenschaftlern um Dr. Roland Mainz und Dr. Christian Kaufmann am HZB gelungen, das Wachstum von hocheffizienten Chalcopyrit-Dünnschichtsolarzellen in Echtzeit zu beobachten und zu untersuchen, wie sich Defekte und Fehlstellen bilden und auflösen, die den Wirkungsgrad mindern können.

Sie haben dafür eine Messkammer am Berliner Elektronenspeicherring BESSY II entwickelt, in der sie verschiedene Messmethoden kombinieren können. Ihre Ergebnisse zeigen, in welchen Stadien das Wachstum beschleunigt werden könnte und wann mehr Zeit wichtig ist, um Defekte zu reduzieren. Die Arbeit wurde nun in den Advanced Energy Materials online veröffentlicht.


Das Wachstum der Schichten lässt sich über in-situ Röntgenstreuung und Fluoreszenzsignale analysieren. Bild: R. Mainz/C.Kaufmann/HZB


In der eigens konstruierten Ko-Verdampfungskammer lässt sich mit Synchrotronlicht aus BESSY II in Echtzeit untersuchen, wie CIGS-Dünnschichtsolarzellen wachsen und wie dabei Defekte entstehen und wieder abgebaut werden. Bild: R. Mainz/HZB

Chalkopyrit-Dünnschichtzellen aus Kupfer-Indium-Gallium-Selenid erreichen heute schon sehr gute Wirkungsgrade von mehr als 20 Prozent. Um solche extrem dünnen, polykristallinen Schichten zu produzieren, hat sich der Prozess der „Ko-Verdampfung“ bewährt: Dabei werden jeweils zwei verschiedene Elemente gleichzeitig aufgedampft, im ersten Schritt Indium (oder Gallium) und Selen, im zweiten Schritt Kupfer und Selen und im dritten Schritt nochmals Indium (oder Gallium) und Selen. So bildet sich ein Teppich aus Kristallen, die nur wenige Defekte aufweisen.

„Bis vor kurzem wussten wir jedoch nicht genau, was bei diesem gleichzeitigen Verdampfen eigentlich passiert“, sagt Dr. Roland Mainz vom Institut für Technologie des HZB. Der Physiker und seine Kollegen haben drei Jahre lang daran gearbeitet, um diese Frage durch Messungen vor Ort und in Echtzeit untersuchen zu können.

Neuartige Versuchskammer mit Vakuum und Heizelementen

Dafür haben sie zunächst eine neuartige Versuchskammer konstruiert, die es erlaubt, während der Ko-Verdampfung die Bildung der polykristallinen Chalkopyrit-Schicht im Synchrotronlicht von BESSY II zu untersuchen. Diese Vakuum-Kammer enthält neben den Zuführungen für die zu verdampfenden Elemente auch Heiz- und Kühlvorrichtungen, um den Verdampfungsprozess zu steuern. „Eine Schwierigkeit war es, die Kammer mit ihrem Gewicht von rund 250 Kilogramm auf zehn Mikrometer in der Höhe genau zu justieren“, sagt Mainz: Schon allein aufgrund von thermischen Ausdehnungen während des Aufdampfungsprozesses muss die Höhenposition im Sekundentakt vollautomatisch nachjustiert werden.

Fluoreszenzsignale und Röntgendiffraktion
Damit gelang es ihnen, weltweit zum ersten Mal, das Wachstum der polykristallinen Schichten mit „in-situ“-Röntgendiffraktion und Fluoreszenzanalyse während der Ko-Verdampfung in Echtzeit zu beobachten. „Wir sehen nun, wie sich die kristallinen Phasen während der verschiedenen Verdampfungsstadien ineinander umwandeln und wie sich dabei Fehlstellen ausbilden. Aber wir können auch erkennen, wann sich diese Fehlstellen wieder abbauen.“ Dies geschieht im zweiten Schritt, wo Kupfer und Selen aufgedampft werden. Dabei hilft überschüssiges Kupfer, das sich als Kupferselenid an der Oberfläche abscheidet, die Defekte abzubauen.
„Das war schon aus früheren Experimenten bekannt, aber wir konnten nun an Hand der Fluoreszenzsignale und numerischer Modellrechnungen zeigen, dass das Kuperselenid dabei in die Kupfer-Indium-Selenid-Schicht eindringt“, erklärt Mainz. Hier zeigten sich jedoch deutliche Unterschiede zwischen Kupfer-Indium-Selenid- und Kupfer-Gallium-Selenid-Schichten: Während Kupfer in die Kupfer-Indium-Selenid-Schicht sehr gut eindringen kann, bleibt es bei der ansonsten recht ähnlichen Verbindung Kupfer-Gallium-Selenid an der Oberfläche. Dies könnte ein Grund sein, warum mit reinem Kupfer-Gallium-Selenid bisher keine hohen Solarzellenwirkungsgrade erzielt werden konnten.

Gezielte Optimierung des Wachstumsprozesses

„Jetzt wissen wir, wo man ansetzen muss, um den Prozess zu optimieren, nämlich am Übergang in die kupferreiche Phase. Bis jetzt hat man den Prozess in allen Phasen sehr langsam ablaufen lassen, damit sich Defekte abbauen können. Unsere Ergebnisse weisen darauf hin, dass man einige Prozessphasen beschleunigen kann, und der Prozess nur dort langsam ablaufen muss, wo Defekte optimal abgebaut werden“, erklärt Mainz. Er freut sich schon auf das Zukunftsprojekt EMIL, das gerade an BESSY II aufgebaut wird. Denn dann werden noch weitaus mächtigere Werkzeuge zur Verfügung stehen, um die komplexen Prozesse beim Wachstum von neuartigen Solarzellen in-situ und in Echtzeit zu untersuchen.

Die Ergebnisse sind in den Advanced Energy Materials veröffentlicht unter: http://dx.doi.org/10.1002/aenm.201300339


Weitere Informationen:
Dr. Roland Mainz
Institut Technologie
Tel.: +49 (0)30-8062-42737
roland.mainz@helmholz-berlin.de

Dr. Christian Kaufmann
Institut Technologie
Tel.: +49 (0)30-8062-43241
kaufmann@helmholtz-berlin.de

Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtzberlin.de

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie