Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarzellen beim Wachsen zusehen

27.06.2013
Erstmals ist es Wissenschaftlern um Dr. Roland Mainz und Dr. Christian Kaufmann am HZB gelungen, das Wachstum von hocheffizienten Chalcopyrit-Dünnschichtsolarzellen in Echtzeit zu beobachten und zu untersuchen, wie sich Defekte und Fehlstellen bilden und auflösen, die den Wirkungsgrad mindern können.

Sie haben dafür eine Messkammer am Berliner Elektronenspeicherring BESSY II entwickelt, in der sie verschiedene Messmethoden kombinieren können. Ihre Ergebnisse zeigen, in welchen Stadien das Wachstum beschleunigt werden könnte und wann mehr Zeit wichtig ist, um Defekte zu reduzieren. Die Arbeit wurde nun in den Advanced Energy Materials online veröffentlicht.


Das Wachstum der Schichten lässt sich über in-situ Röntgenstreuung und Fluoreszenzsignale analysieren. Bild: R. Mainz/C.Kaufmann/HZB


In der eigens konstruierten Ko-Verdampfungskammer lässt sich mit Synchrotronlicht aus BESSY II in Echtzeit untersuchen, wie CIGS-Dünnschichtsolarzellen wachsen und wie dabei Defekte entstehen und wieder abgebaut werden. Bild: R. Mainz/HZB

Chalkopyrit-Dünnschichtzellen aus Kupfer-Indium-Gallium-Selenid erreichen heute schon sehr gute Wirkungsgrade von mehr als 20 Prozent. Um solche extrem dünnen, polykristallinen Schichten zu produzieren, hat sich der Prozess der „Ko-Verdampfung“ bewährt: Dabei werden jeweils zwei verschiedene Elemente gleichzeitig aufgedampft, im ersten Schritt Indium (oder Gallium) und Selen, im zweiten Schritt Kupfer und Selen und im dritten Schritt nochmals Indium (oder Gallium) und Selen. So bildet sich ein Teppich aus Kristallen, die nur wenige Defekte aufweisen.

„Bis vor kurzem wussten wir jedoch nicht genau, was bei diesem gleichzeitigen Verdampfen eigentlich passiert“, sagt Dr. Roland Mainz vom Institut für Technologie des HZB. Der Physiker und seine Kollegen haben drei Jahre lang daran gearbeitet, um diese Frage durch Messungen vor Ort und in Echtzeit untersuchen zu können.

Neuartige Versuchskammer mit Vakuum und Heizelementen

Dafür haben sie zunächst eine neuartige Versuchskammer konstruiert, die es erlaubt, während der Ko-Verdampfung die Bildung der polykristallinen Chalkopyrit-Schicht im Synchrotronlicht von BESSY II zu untersuchen. Diese Vakuum-Kammer enthält neben den Zuführungen für die zu verdampfenden Elemente auch Heiz- und Kühlvorrichtungen, um den Verdampfungsprozess zu steuern. „Eine Schwierigkeit war es, die Kammer mit ihrem Gewicht von rund 250 Kilogramm auf zehn Mikrometer in der Höhe genau zu justieren“, sagt Mainz: Schon allein aufgrund von thermischen Ausdehnungen während des Aufdampfungsprozesses muss die Höhenposition im Sekundentakt vollautomatisch nachjustiert werden.

Fluoreszenzsignale und Röntgendiffraktion
Damit gelang es ihnen, weltweit zum ersten Mal, das Wachstum der polykristallinen Schichten mit „in-situ“-Röntgendiffraktion und Fluoreszenzanalyse während der Ko-Verdampfung in Echtzeit zu beobachten. „Wir sehen nun, wie sich die kristallinen Phasen während der verschiedenen Verdampfungsstadien ineinander umwandeln und wie sich dabei Fehlstellen ausbilden. Aber wir können auch erkennen, wann sich diese Fehlstellen wieder abbauen.“ Dies geschieht im zweiten Schritt, wo Kupfer und Selen aufgedampft werden. Dabei hilft überschüssiges Kupfer, das sich als Kupferselenid an der Oberfläche abscheidet, die Defekte abzubauen.
„Das war schon aus früheren Experimenten bekannt, aber wir konnten nun an Hand der Fluoreszenzsignale und numerischer Modellrechnungen zeigen, dass das Kuperselenid dabei in die Kupfer-Indium-Selenid-Schicht eindringt“, erklärt Mainz. Hier zeigten sich jedoch deutliche Unterschiede zwischen Kupfer-Indium-Selenid- und Kupfer-Gallium-Selenid-Schichten: Während Kupfer in die Kupfer-Indium-Selenid-Schicht sehr gut eindringen kann, bleibt es bei der ansonsten recht ähnlichen Verbindung Kupfer-Gallium-Selenid an der Oberfläche. Dies könnte ein Grund sein, warum mit reinem Kupfer-Gallium-Selenid bisher keine hohen Solarzellenwirkungsgrade erzielt werden konnten.

Gezielte Optimierung des Wachstumsprozesses

„Jetzt wissen wir, wo man ansetzen muss, um den Prozess zu optimieren, nämlich am Übergang in die kupferreiche Phase. Bis jetzt hat man den Prozess in allen Phasen sehr langsam ablaufen lassen, damit sich Defekte abbauen können. Unsere Ergebnisse weisen darauf hin, dass man einige Prozessphasen beschleunigen kann, und der Prozess nur dort langsam ablaufen muss, wo Defekte optimal abgebaut werden“, erklärt Mainz. Er freut sich schon auf das Zukunftsprojekt EMIL, das gerade an BESSY II aufgebaut wird. Denn dann werden noch weitaus mächtigere Werkzeuge zur Verfügung stehen, um die komplexen Prozesse beim Wachstum von neuartigen Solarzellen in-situ und in Echtzeit zu untersuchen.

Die Ergebnisse sind in den Advanced Energy Materials veröffentlicht unter: http://dx.doi.org/10.1002/aenm.201300339


Weitere Informationen:
Dr. Roland Mainz
Institut Technologie
Tel.: +49 (0)30-8062-42737
roland.mainz@helmholz-berlin.de

Dr. Christian Kaufmann
Institut Technologie
Tel.: +49 (0)30-8062-43241
kaufmann@helmholtz-berlin.de

Pressestelle
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtzberlin.de

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise