Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf smarten Oberflächen bleibt kein Tropfen

01.06.2012
Sei es bei Fensterscheiben, Korrosionsbeschichtungen oder mikrofluidischen Systemen im medizinischen Labor – Oberflächen, die sich selbst von Wasser und anderen Flüssigkeiten befreien, würden vieles vereinfachen. Wie solche Oberflächen für verschiedene Anwendungen aussehen müssen, errechnet nun ein neues Simulationsprogramm.

Es regnet in Strömen. Ein kurzer Weg bis zum Auto, und schon vernebeln zahlreiche Tropfen auf der Brille die Sicht. Künftig könnte es allerdings überflüssig sein, das Putztuch zu zücken:


Links: Mikrometerfein strukturierte Polystyroloberfläche für mikrofluidische Anwendungen. Rechts: Statische Benetzung einer solchen Oberfläche mit Wasser – Simulation und Experiment. © Fraunhofer IWM

Ist die Oberfläche des Glases ähnlich gestaltet wie die eines Lotusblattes, laufen die Tropfen von alleine ab, ohne Spuren zu hinterlassen. Sinnvoll sind solche selbstreinigenden Flächen nicht nur bei Brillengläsern – auch Korrosionsbeschichtungen würden dem nagenden Rost deutlich länger standhalten, wenn das Wasser nicht in kleinen Pfützen darauf stehen bliebe.

Doch wie müssen Oberflächen genau beschaffen sein, um sich optimal selbst zu reinigen? Das errechnet nun eine Simulationssoftware, die Forscher am Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg entwickelt haben. »Unsere Simulation zeigt, wie sich verschiedene Flüssigkeiten auf unterschiedlichen Oberflächen verhalten – ganz gleich, ob diese eben, gekrümmt oder strukturiert sind«, erklärt Dr. Adham Hashibon, Projektleiter am IWM.

Das Programm simuliert zum einen die Form, die Flüssigkeitstropfen auf der Oberfläche annehmen – also etwa, ob sich die Flüssigkeit auf der Oberfläche verteilt oder sich tropfenmäßig zusammenzieht, um möglichst wenig Kontakt mit ihr zu haben. Zum anderen berechnet es das Fließverhalten und damit, wie sich die Flüssigkeiten auf verschiedenen Oberflächen bewegen. Die Forscher integrieren dabei Faktoren über viele Größenskalen hinweg: von atomaren Wechselwirkungen bis hin zu den Auswirkungen der mikroskopischen Oberflächenstruktur.

Die Software analysiert, was innerhalb eines Tropfens passiert – wie also die einzelnen Wassermoleküle miteinander wechselwirken, wie ein Tropfen von der Oberfläche angezogen wird und sich gegenüber der Luft abgrenzt. Die Forscher sprechen von der Drei-Phasen-Kontaktlinie zwischen Flüssigkeit, Oberfläche und Luft. »Es gibt sehr viele Parameter, die beeinflussen, wie sich die Flüssigkeit auf einer Fläche verhält – beispielsweise die Oberflächenbeschaffenheit des Materials und die Struktur, aber auch Substanzen, die in der Flüssigkeit gelöst sind. All dies haben wir in unterschiedlichen Detailierungsgraden in der Simulation berücksichtigt und können so unsere experimentellen Ergebnisse sehr gut wiedergeben«, sagt Hashibon.

Mikrofluidische Systeme verbessern

Auch für medizinische Untersuchungen ist die Simulation hilfreich. Müssen Ärzte Gewebezellen oder DNA-Bestandteile analysieren, verwenden sie dafür oft mikrofluidische Systeme wie Durchfluss-Küvetten. Die Flüssigkeit mit den gelösten Substanzen fließt durch winzige Kanäle und kleine Kammern und wird dabei analysiert. Wichtig ist, dass sie sich nach der Untersuchung restlos aus allen Kammern und Kanälen entfernen lässt. Denn würden Tropfenreste hängen bleiben, würden sie sich später mit der neuen Probe vermischen und die Ergebnisse verfälschen. Die Simulation soll künftig dabei helfen, solche mikrofluidischen Systeme zu optimieren und die Oberflächen so zu gestalten, dass möglichst wenig Flüssigkeit dort verbleibt.

»Unser Ziel war es, das Benetzungsverhalten von Flüssigkeiten auf strukturierten Oberflächen besser zu verstehen und gezielt zu steuern«, sagt Hashibon. Doch damit nicht genug: Das Tool kann auch helfen, eine Art Verkehrsleitsystem in den mikrofluidischen Systemen zu realisieren: Sind an einer Weggabelung die weiterführenden Kanäle jeweils mit unterschiedlichen Oberflächenstrukturen versehen, lassen sich verschiedene Bestandteile trennen – beispielsweise fließen DNA-Moleküle in den einen Kanal, andere Bestandteile in den anderen. So lässt sich die Konzentration bestimmter Moleküle erhöhen. Das ist besonders wichtig, um beispielsweise die Nachweisempfindlichkeit eines Analyseverfahrens zu erhöhen.

Dr. Adham Hashibon | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2012/juni/auf-smarten-oberflaechen-bleibt-kein-tropfen.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Smart und bequem: Neue Textilien für High-Tech-Kleidung, made in Bayreuth
14.02.2018 | Universität Bayreuth

nachricht Super-Werkstoffe für die Automobil-, Luft- und Raumfahrtbranche
12.02.2018 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics