Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Silber-Nanodraht senkt Kosten für organische Solarzellen

14.05.2013
Wie lassen sich organische Solarzellen lichtdurchlässig herstellen und das ganz ohne den teuren Rohstoff Indium – dieser Frage sind Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) nachgegangen und haben die Antwort in feinsten Silberdrähten gefunden.

Sie haben die bisher üblichen Elektroden aus Indiumzinnoxid (ITO) durch Silber-Nanodrähte ersetzt, welche vor allem mit geringeren Kosten für Material und Verarbeitung punkten. Ihre Ergebnisse veröffentlichten die Forscher jüngst in der Online-Ausgabe der Fachzeitschrift Advanced Energy Materials (1).

Organische Solarzellen unterscheiden sich deutlich von gewöhnlichen Siliziumzellen, die aus Freilandanlagen oder von Hausdächern bekannt sind. Die für den Photoeffekt verantwortlichen Schichten bestehen bei organischer Photovoltaik aus rein synthetisch hergestellten Materialien, speziellen Polymeren und Fullerenen. Mit dem synthetischen Material verbinden sich viele Vorteile: Die Solarzellen sind dünn wie Klarsichthüllen und biegsam. Sie können lichtdurchlässig und in verschiedenen Farben hergestellt werden. Durch diese Besonderheiten eignen sie sich – anders als kristalline Solarzellen – auch für den Einsatz in Textilien und als Gestaltungselemente in der Architektur, beispielsweise an Fassaden oder in Fenstern.

Ein Hemmschuh für den kommerziellen Durchbruch organischer Solarzellen sind bisher die Kosten, Effizienz und Haltbarkeit. Insbesondere die Kosten werden durch die Ergebnisse der FAU-Wissenschaftler sinken – vor allem semitransparente Solarzellen erhalten einen Entwicklungsschub. Die Herstellung dieser Zellen verlangte bisher den Einsatz von ITO als Material für die Elektroden: Es war das einzige Material, das die notwendigen guten elektrischen Leiteigenschaften mit der benötigten Lichtdurchlässigkeit der Elektroden verband. Über die Elektroden fließen die in der photoaktiven Schicht erzeugten Ladungen als Strom ab. Indium ist dabei nicht nur ein kostenintensiver Rohstoff, das Indiumzinnoxid muss bei der Herstellung zudem in einem teuren Vakuumprozess verarbeitet werden. Dafür fällt bei der Produktion der größte Teil der Energie an.
Dem FAU-Wissenschaftler Fei Guo gelang es nun, ITO durch feinste Silberdrähte als Elektroden zu ersetzen. Guo ist Mitglied der Forschergruppe, die von Prof. Dr. Christoph Brabec, Lehrstuhl für Werkstoffwissenschaften (Werkstoffe der Elektronik und Energietechnik), koordiniert und von den Arbeitsgruppen von Prof. Dr. Marcus Halik, Prof. Dr. Dirk Guldi und Prof. Dr. Erdmann Spiecker unterstützt wird. Die Forscher spannten ein Drahtnetz mit einer Dicke im Nanometerbereich über die photoaktive Schicht der Solarzellen: elektrisch leitfähig und gleichzeitig grobmaschig genug, um genügend Licht in die Zelle und durch sie hindurch zu lassen. Die Tests an Referenzzellen ergaben, dass diese neue Variante bezüglich ihrer Leistung gleichauf liegt mit den konventionell hergestellten organischen Solarzellen. Mit 63 Prozent Füllfaktor – einer der Indikatoren für die Effizienz von Solarzellen – erreichten die Forscher sogar den höchsten bisher dokumentieren Wert für organische Solarzellen, die in einem reinen Druckverfahren hergestellt wurden. Bei mehr als 50 hergestellten weiteren Zellen bewegte sich der Füllfaktor mit 58 bis 62 Prozent nur geringfügig darunter.

Neben ähnlicher Leistungsfähigkeit bietet das neue Material jedoch deutliche Vorzüge: Silber-Nanodraht ist wesentlich günstiger als ITO und auch die Produktion wird kostengünstiger und weniger energieintensiv: Semitransparente Solarzellen können nun komplett im Druckverfahren produziert werden. Die einzelnen Komponenten sind dabei in Flüssigkeit gelöst und werden als Tinte auf eine dünne Plastikfolie nacheinander aufgedruckt und getrocknet. Der Vakuumprozess entfällt. Auf vergleichsweise einfache Weise können so riesige Solarbögen hergestellt werden.

Die jetzt vorgelegten Forschungsergebnisse sind darüber hinaus relevant für organische LEDs, die derzeit unter anderem als Beleuchtung von Handydisplays dienen, sowie für intransparente organische Solarzellen. Laptopnutzer könnten ihr Gerät in Zukunft zum Beispiel direkt über die Notebooktasche laden, in deren Stoff eine solche intransparente Solarzelle eingenäht ist. Auch hier zeigen die Silber-Nanodraht-Elektroden potenzielle Stärken: Sie sind deutlich biegsamer als ITO-Elektroden, welche bei starker Beanspruchung leichter brechen.
Die Arbeit entstand im Rahmen des Exzellenzclusters Engineering of Advanced Materials (EAM), der eine Brücke zwischen Grundlagenforschung und der praktischen Anwendung schlägt. Die FAU-Wissenschaftler zeigen mit ihren Ergebnissen Einsparpotenziale auf, die die Technik für neue Massenmärkte attraktiv macht. Langfristig könnten sie damit sogar der konventionellen Photovoltaik auf Hausdächern oder im Freiland Konkurrenz machen.

1) Advanced Energy Materials (2013)/doi: 10.1002/aenm.201300100

Weitere Informationen für die Medien:
Prof. Dr. Christoph Brabec
Tel.: 09131/85-25426
christoph.brabec@ww.uni-erlangen.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy