Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein schneller Schalter für Magnetnadeln

12.04.2011
Magnetische Vortex-Kerne, die sich als besonders stabile Speicherpunkte für Datenbits eignen, lassen sich nun deutlich schneller schalten

Mikroskopisch winzige ferromagnetische Plättchen zeigen ein Phänomen, das in Zukunft für eine besonders stabile magnetische Speicherung von Daten genutzt werden könnte: so genannte magnetische Vortex-Kerne. Dabei handelt es sich um nadelförmige magnetische Strukturen mit 20 Nanometern (Millionstel Millimeter) Durchmesser.


Ein Datenpunkt ändert die Polarisierung: Der Probenausschnitt zeigt die Magnetisierung, während sie sich von oben nach unten umkehrt. © M. Kammerer / MPI für intelligente Systeme


Ein schneller Schalter für Bits: Mit dem neuen Schaltmechanismus bei 5,0 Gigahertz lässt sich ein magnetischer Vortex-Kern, der hier in dem inneren Probenausschnitt dargestellt ist, in 0,2 Nanosekunden umpolen. Der neue Mechanismus über eine Spinwellenanregung ist somit zwanzigmal schneller als der alte Mechanismus bei 0,24 Gigahertz. © M. Kammerer / MPI für intelligente Systeme

Vor fünf Jahren fanden Forscher des Max-Planck-Institutes für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung) in Stuttgart einen Weg, die Magnetfeldnadeln trotz ihrer Stabilität mit winzigem Energieaufwand umzukehren, sodass ihre Spitze in die entgegengesetzte Richtung zeigt. Ein solcher Schaltvorgang ist die Vorraussetzung, um die Vortex-Kerne in der Datenverarbeitung verwenden zu können. Nun haben die Stuttgarter Wissenschaftler einen neuen Mechanismus entdeckt, der diesen Schaltprozess um mindestens das 20-fache beschleunigt und ihn auf einen weitaus engeren Raum begrenzt als vorher. Somit könnten magnetische Vortex-Kerne eine zugleich stabile, schnelle und stark miniaturisierte Datenspeicherung ermöglichen.

Nur rund ein tausendstel Millimeter Kantenlänge und wenige Millionstel Millimeter Dicke: diese winzigen Abmessungen haben die Plättchen aus Permalloy, einer Legierung aus Nickel und Eisen, die die Forscher um Hermann Stoll vom Stuttgarter Max-Planck-Institut für Intelligente Systeme untersuchen. Die Plättchenform sorgt für die Ausbildung einer geordneten magnetischen Struktur. Die Ordnung erinnert an eine Zielscheibe: wie winzige Kompassnadeln bilden die magnetischen Momente der Atome in der Ebene des Plättchens konzentrische Kreise, so genannte Wirbel oder auf Englisch Vortices.

In der Mitte des Plättchens ändert sich diese kreisförmige Ordnung. „Stellen Sie sich vor, man legt konzentrische Kreise aus Streichhölzern“, erklärt Hermann Stoll. „In der Mitte des Kreises geht das nicht, weil die Streichhölzer zu lang sind. Man muss sie dann aus der Ebene herausdrehen, sodass sich eine Nadel bildet, die senkrecht zur Ebene steht“. In den Vortex-Plättchen passiert etwas Ähnliches: Es bildet sich eine Art Magnetfeldnadel, die aus der Ebene herausragt, der so genannte Vortex-Kern, mit gerade einmal 20 Nanometern Durchmesser. Weil er entweder nach oben oder nach unten zeigen kann, könnte er für die Speicherung von einem Informationsbit genutzt werden.

Mit einem von außen wirkenden Magnetfeld lässt sich die Polarität des Vortex-Kerns umschalten, allerdings muss es sehr stark sein, etwa ein halbes Tesla. Das entspricht etwa einem Drittel des Feldes, das der stärkste Dauermagnet liefern kann. Dies bringt einerseits den Vorteil mit sich, dass ein entsprechender Magnetspeicher gegen störende Magnetfelder stabil wäre. Diese Stabilität gerät andererseits aber auch zum Nachteil, da sie das Umkehren des Vortex-Kernes und somit das Verarbeiten von Daten erschwert.

Der neue Schaltmechanismus ermöglicht kompaktere Speicher
Doch es gibt raffinierte Mechanismen, die das Umschalten des Vortex-Kernes mit kleineren Magnetfeldern ermöglichen, ohne die magnetische Stabilität zu verlieren. Vor fünf Jahren fanden die Stuttgarter Forscher, zusammen mit Kollegen der Universität Gent, der Advanced Light Source in Berkeley, Kalifornien, des Forschungszentrums Jülich und den Universitäten Regensburg und Bielefeld, einen Weg, wie sich der Vortex-Kern mit einem 300 Mal schwächeren Magnetfeldpuls dynamisch umschalten lässt. Beobachtet haben die Wissenschaftler den zuvor unbekannten Mechanismus mithilfe der so genannten zeitaufgelösten magnetischen Raster-Röntgenmikroskopie, die am Stuttgarter Max-Planck-Institut entwickelt und in Berkeley an der Advanced Light Source durchgeführt worden war.

Inzwischen hat die Abteilung Schütz des Max-Planck-Institutes für Intelligente Systeme in enger Zusammenarbeit mit dem Helmholtz-Zentrum bei BESSY II in Berlin ein neuartiges Rasterröntgenmikroskop aufgebaut. Hier haben die Stuttgarter Physiker, zusammen mit Wissenschaftlern der Universitäten Gent und Regensburg, nun einen weiteren Mechanismus entdeckt, mit dem sich ein Vortex-Kern mindestens 20 Mal schneller umschalten lässt als bisher, nämlich innerhalb von rund 200 Pikosekunden, wobei die Forscher einen Magnetfeldpuls im Gigahertzbereich anlegen. Vor fünf Jahren hatten sie einen Puls im Megahertzbereich verwendet und das Umschalten dauerte vier Nanosekunden.

Bei dem jetzt entdeckten Mechanismus werden so genannte Spinwellen, also sich wellenförmig ausbreitende Fluktuationen der Magnetisierung des Materials, erzeugt. Wie das Wissenschaftlerteam festgestellt hat, sind diese Anregungen in der Lage, den Vortex-Kern umzuschalten. Der Forschergruppe gelang es zudem, dieses Phänomen theoretisch zu beschreiben. „Wir können voraussagen, dass es möglich ist, die Umschaltzeit noch um einen Faktor 10 zu verkürzen“, sagt Hermann Stoll.

Wenn es darum geht, einen Vortex-Kern als Speicherbit zu nutzen, bringt der jetzt beobachtete Effekt neben der höheren Schaltgeschwindigkeit einen weiteren Vorteil. Der Vortex-Kern bleibt beim Schalten mit Spinwellen nämlich nahezu ortsfest. Dagegen muss er beim langsameren Schalten mit Frequenzen im Megahertz-Bereich, wie sie vor fünf Jahren entdeckt worden waren, weit aus seiner Gleichgewichtslage ausgelenkt werden, so dass ein Speicherbit mehr Platz benötigt. Der neue Mechanismus ermöglicht also eine weitere Miniaturisierung, wenn künftig möglicherweise einmal Datenspeicher konstruiert werden, die nach diesem Prinzip arbeiten.

Ansprechpartner
Dr. Hermann Stoll
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-1848
Fax: +49 711 689-1952
E-Mail: stoll@mf.mpg.de
Matthias Kammerer
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3438
Fax: +49 711 689-1952
E-Mail: kammerer@is.mpg.de
Originalveröffentlichung
Matthias Kammerer, Markus Weigand, Michael Curcic, Matthias Noske, Markus Sproll, Arne Vansteenkiste, Bartel Van Waeyenberge, Hermann Stoll, Georg Woltersdorf, Christian H. Back, Gisela Schuetz
Magnetic vortex core reversal by excitation of spin waves
Nature Communications, 12. April 2011; doi: 10.1038/ncomms1277

Dr. Hermann Stoll | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/1362966/vortexkerne_als_datenspeicher?page=2

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie