Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schmucksteine aus synthetischem Diamant

12.05.2015

Synthetischer Diamant wird fast ausschließlich in industriellen Anwendungen eingesetzt. Bislang konnten die »man-made diamonds« nicht in ausreichend hoher Stückzahl hergestellt werden, um sie als Schmucksteine zu etablieren.

Forscher haben nun das Verfahren zur Herstellung von synthetischem Diamant so weit ausgereift, dass in einem Plasma-Reaktor 600 Diamanten gleichzeitig gewachsen werden können. Der weltweit einzigartige Reaktortyp des Fraunhofer-Instituts für Angewandte Festkörperphysik IAF in Freiburg ermöglicht die Herstellung von einkristallinen Diamanten mit sehr hohem Reinheitsgrad.


Eine Vielzahl einkristalliner Diamantschichten kann in dem Reaktor parallel abgeschieden werden.

Fraunhofer IAF


Die besondere Ellipsoid-Form des Plasma-Reaktors ermöglicht das großflächige Abscheiden von Diamant.

Fraunhofer IAF

»Diamonds are a girl’s best friend« sang Carol Channing schon 1949. Daran hat sich bis heute nichts geändert. Diamant als Schmuckstein ist begehrt – vor allem in den USA, China und Europa. In fünf Jahren soll die Nachfrage nach Rohdiamanten das Angebot sogar übersteigen, sagt eine Studie von Bain & Company und dem Antwerp World Diamond Centre, die Anfang März 2015 veröffentlicht wurde.

Künstlich hergestellter Diamant könnte den Markt zukünftig bereichern und eine Alternative zu der knappen, natürlichen Ressource sein. Wurde bislang die aufwendige Herstellung von sogenannten »man-made diamonds« bemängelt, präsentieren Forscher des Fraunhofer IAF nun ein Verfahren, das die serielle Produktion von einkristallinem Diamant ermöglicht.

Plasma-Reaktor lässt 600 Diamanten gleichzeitig wachsen

»600 Diamanten können wir in unserem Plasma-Reaktor gleichzeitig wachsen. Das ist weltweit einzigartig«, erklärt Dr. Christoph Nebel, Abteilungsleiter am Fraunhofer IAF. »Die besondere Bauform des Reaktors ermöglicht es, ein großvolumiges Plasma zu erzeugen und damit Diamant auf einer großen Fläche abzuscheiden«.

Innerhalb von zehn Tagen können so in dem Reaktor bis zu 600 Substrate, je 3 x 3 x 0,3 mm3 groß, mit einkristallinem Diamant überwachsen werden. Dies entspricht einer Menge von 190 Karat Schmuckdiamant. Und das Ergebnis kann sich sehen lassen: Mit einer Konzentration von Fremdatomen kleiner als 1016 cm-3 weist der künstlich hergestellte Diamant eine höhere Reinheit auf als sein natürliches Pendant.

»Mit dem bloßen Auge ist natürlicher von synthetischem Diamant nicht zu unterscheiden«, ergänzt Nebel. Nur rund 15 Prozent des in der Natur abgebauten Rohdiamanten werden als Schmuckstein etwa in einem Kollier oder Ring verwendet, da der Großteil der Steine zu unrein oder die Form ungeeignet ist. Bei dem aufwendigen Abbau des natürlichen Diamantvorkommens werden Mensch und Umwelt zudem stark in Mitleidenschaft gezogen. Dank der synthetisch hergestellten Steine könnte zukünftig »nachhaltiger« Schmuck angeboten werden.

Chemische Gasphasenabscheidung optimiert

In über 15 Jahren haben die Forscher am Fraunhofer IAF die Abscheidung von polykristallinen Diamantschichten mittels Mikrowellen-Plasma-unterstützter chemischer Gasphasenabscheidung (engl. »Microwave Plasma Chemical Vapor Depostion«, MWPCVD) perfektioniert.

Die besondere Bauform des Reaktors resultiert aus dem ellipsoiden Reflektor. Über Multiantennen-Geometrie wird die Mikrowelle in den Reaktionsraum eingekoppelt. Mittlerweile ist das Verfahren so ausgereift, dass eine Vielzahl einkristalliner Diamantschichten parallel in relativ kurzer Zeit abgeschieden werden kann.

Konkurrierende Verfahren wie das Hochdruck-Hochtemperatur-Verfahren (engl. »High-Pressure High-Temperature«, HPHT) haben es bislang nicht geschafft, Diamanten mit so hohem Reinheitsgrad in großen Mengen zu prozessieren.

Der hierbei benötigte hohe Druck und eine Temperatur von über 1500 °C erlauben nur die Züchtung einzelner Kristalle. Anders bei der chemischen Gasphasenabscheidung am Fraunhofer IAF: in einem Niederdruckverfahren werden die Diamantkristalle bei einer Temperatur von 800 °C mit hoher Wachstumsrate gezüchtet.

Diamant ist nicht nur schön anzusehen, sondern auch in Kombination mit beispielsweise Bor oder Phosphor ein vielversprechender Halbleiter. Aufgrund seiner außergewöhnlichen Wärmeleitfähigkeit ermöglicht Diamant als Grundmaterial für elektronische Bauelemente sehr hohe Leistung ohne externe Kühlung. So kann er zukünftig nicht nur in Schmuck sondern unter anderem in Leistungsbauelementen für die Satelliten-Kommunikation, Linsen für Hochenergie-Laser oder Einzelphotonen-Emittern eingesetzt werden.

Weitere Informationen:

http://www.iaf.fraunhofer.de/de/presse-veranstaltungen/pressemitteilungen/presse...

Sonja Kriependorf | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Sparsamer abheben dank Leichtbau-Luftdüsen
23.10.2017 | Technische Universität Chemnitz

nachricht Stickoxide: Neuartiger Katalysator soll Abgase ohne Zusätze reinigen
23.10.2017 | Forschungszentrum Jülich GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie