Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schluss mit „anhänglichen“ Schweissgeruch-Molekülen

13.12.2011
Kleidungsstücke, denen Schweißgeruch hartnäckig anhaftet, stellen für deren Träger, Hersteller und die Waschmittel- und Maschinenindustrie gleichermaßen ein Problem dar. Wissenschaftler der Hohenstein Institute in Bönnigheim haben untersucht, warum sich diese Geruchs-Moleküle in Verbindung mit bestimmten textilen Materialien zum Teil sogar nach dem Waschen als besonders „anhänglich“ erweisen.

Dazu entwickelten die Experten um Prof. Dr. Dirk Höfer zwei Testmethoden, mit denen sich die Schweiß-Moleküle, die in Textilien gebunden sind, quantitativ erfassen lassen. Mit Hilfe dieser Untersuchungen lässt sich bereits bei der Konstruktion von Textilien deren Neigung zur Annahme von Schweißgeruch überprüfen und in der Folge positiv beeinflussen. Neben Sport- und Businesskleidung sieht Prof. Höfer hier insbesondere bei Polstertextilien für öffentliche Verkehrsmittel sowie in der Automobil- und Luftfahrtindustrie noch Optimierungsbedarf.

Aber auch die Hersteller von Waschmitteln und –maschinen können mit Hilfe der Hohenstein Entwicklungen künftig sicherstellen, dass ihre Produkte insbesondere bei neuartigen textilen Materialkombinationen für eine zuverlässige Geruchsreduzierung beim Waschen sorgen.

Dass die Verhinderung von unangenehmem Schweißgeruch in Textilien und dessen Entfernung keine triviale Aufgabe ist, hängt in erster Linie mit dessen komplexer Zusammensetzung aus verschiedensten chemischen Substanzen zusammen.Verantwortlich für den typischen (unangenehmen) Schweißgeruch sind dabei u.a. spezifische Carbonsäuren. Bei ihren Untersuchungen „impfen“ die Hohenstein Wissenschaftler die verschiedenen textilen Materialien mit einer definierten Menge von Carbonsäure, die zuvor radioaktiv markiert wurde. Um eine volle Vergleichbarkeit der Ergebnisse zu ermöglichen, werden jeweils gleiche textile Konstruktionen (Gestricke,Gewirke usw.) und Flächengewichte (g/m2) zugrunde gelegt – lediglich die zugrundeliegenden Faserarten (Baumwolle, Polyster usw.) unterscheiden sich. Nach einer Einwirkzeit (Inkubation) von 24 Stunden wird die Anzahl der radioaktiv markierten Carbonsäuren ermittelt und verglichen.

In ihrem zweiten Prüfszenario verwenden die Hohenstein Experten eine künstliche Schweißlösung (Schweißgeruchssimulat), die mehrere Leitsubstanzen des Schweißgeruchs in definierten Verhältnissen enthält und damit jederzeit reproduzierbar ist. Die textilen Muster werden mit einer festgelegten Menge des Kunstschweißes versehen und unter gleichbleibenden klimatischen Bedingungen aufbewahrt. Nach Ablauf der Inkubationszeit wird die Geruchsintensität der Textilien von speziell geschulten Testriechern in sogenannten Pannelist-Untersuchungen beurteilt.

Die Kombination von instrumentellen und Pannelist-Untersuchungen sind in dieser Form weltweit einzigartig. Durch die interdisziplinäre Zusammenarbeit der Forscher verschiedener Fachgebiete stellen die Experten der Hohenstein Institute zudem sicher,dass nicht nur den Gründen für die Bindung von Schweiß in Textilien auf die Spur gegangen wird, sondern in Zusammenarbeit mit der Industrie auch Lösungswege für deren Eliminierung entwickelt werden können.

Warum Textilien unterschiedlich stark nach Schweiß riechen?
Wie stark ein Textil nach Schweiß riecht, hängt zum einen davon ab, wie viele Schweißgeruchsmoleküle das Textil aufnimmt und zum anderen wie viele dieser Moleküle im Zeitverlauf wieder freigegeben werden und damit als (unangenehmer) Geruch wahrnehmbar sind. Die quantitative Erfassung der Geruchsmoleküle durch die Hohenstein Wissenschaftler haben bestätigt, dass Baumwolle die Schweißmolekühle stärker und länger an sich bindet als z. B. Polyester. Von diesem können sich die Moleküle, die für den Geruch verantwortlich sind offenbar leichter lösen. Dieses Ergebnis wurde auch bei der Beurteilung durch Testriecher mit Hilfe von Kunstschweiß bestätigt. Die Geruchsprüfer bestätigten einen geringeren Geruch der T-Shirts aus Baumwolle im Vergleich zu Polyester.

Rose-Marie Riedl | idw
Weitere Informationen:
http://www.hohenstein.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie