Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenblick in die Kunststoff-Solarzelle

08.01.2016

Sie sind leicht, einfach zu installieren und können ohne großen Aufwand mit einem industriellen Drucker produziert werden: Solarzellen aus Kunststoff. Noch sind sie herkömmlichen Solarmodulen in der Effizienz unterlegen. Forscherinnen und Forschern der Technischen Universität München (TUM) ist es gelungen, Vorgänge bei der Herstellung der organischen Solarzellen auf molekularer Ebene in Echtzeit zu beobachten. Die Ergebnisse, die im Fachmagazin "Advanced Energy Materials" veröffentlicht wurden, helfen dabei, die Leistung organischer Solarzellen zu verbessern.

Solarmodule, die auf den Dächern vieler Häuser zu sehen sind, bestehen größtenteils aus dem Halbleiter Silizium. Sie sind schwer, ihre Befestigung auf Dächern daher aufwändig. Auch fügen sie sich oft nicht harmonisch in die Umgebung ein.


Stephan Pröller (li.) und Dr. Eva M. Herzig untersuchen Kunststoff-Solarzellen.

Uli Benz / TUM

Eine Alternative zu herkömmlichen Solarzellen sind die sogenannten organischen Solarzellen, die aus Kunststoff bestehen. Diese können einfach als dünner Film mit einem industriellen Drucker hergestellt werden. Die Installation dieses Films an verschiedenen Orten ist unkompliziert. Außerdem ist es auch möglich, die Farbe und Form der Solarzellen zu verändern. Allerdings gibt es einen Nachteil: Noch reicht die Effizienz der organischen Photovoltaik nicht an die Silizium-Solarzellen heran.

Prozesse auf Nanoebene

Eine Stellschraube, um mithilfe der flexiblen Solarzellen mehr Energie aus der Sonne zu gewinnen, ist die Anordnung der molekularen Bausteine des Materials. Diese ist wichtig für die Energieumwandlung. Denn wie bei der "klassischen" Solarzelle müssen freie Elektronen erzeugt werden. Dazu benötigen Kunststoffsolarzellen zwei Materialtypen: Einen, der Elektronen abgibt (Elektronendonator), und einen, der sie wieder aufnimmt (Elektronenakzeptor).

Diese Materialien müssen eine möglichst große Grenzfläche zueinander aufweisen, um Licht in Strom umzuwandeln. Wie genau sich die Moleküle beim Drucken der Solarzellen zueinander anordnen und wie die Kristalle während des anschließenden Trocknungsvorgangs wachsen, ist nicht bekannt.

"Um die Anordnung der Bausteine gezielt beeinflussen zu können, müssen wir verstehen, was auf molekularer Ebene passiert", erklärt Dr. Eva M. Herzig von der Munich School of Engineering (MSE) der TUM. Solche kleinen Strukturen innerhalb eines trocknenden Films zeitaufgelöst zu messen ist eine experimentelle Herausforderung.

Je langsamer, desto effizienter

Stephan Pröller, Doktorand an der MSE, nutzte in Zusammenarbeit mit dem Lawrence Berkeley National Laboratory, USA, Röntgenstrahlung, um die Moleküle und deren Prozesse während des Druckens eines Kunststoff-Films sichtbar zu machen. Dabei identifizierte er verschiedene Phasen, die beim Trocknen des Films ablaufen.

Anfangs verdampft das Lösungsmittel, wodurch sich die Konzentration der Kunststoffmoleküle im noch feuchten Film stetig erhöht. Ab einer gewissen Konzentration beginnt das Material, das als Elektronendonator fungiert, zu kristallisieren; die Moleküle des Elektronenakzeptors bilden Aggregate. Die Elektronendonator-Kristalle vergrößern sich schnell, was dazu führt, dass sich auch die Elektronenakzeptor-Aggregate weiter zusammenschieben. Dieser Prozess legt die Abstände der Grenzflächen zwischen den beiden Materialien fest. Diese sind entscheidend für die Effizienz. Um die Solarzellen zu verbessern, muss daher bei diesem Prozessschritt angesetzt werden.

In der letzten Phase finden noch Optimierungsprozesse innerhalb der jeweiligen Materialien statt, wie die Verbesserung der Packungsdichte in den Kristallen.

"Die Geschwindigkeit der Herstellung spielt eine wichtige Rolle", erklärt Pröller. Bei schnelleren Trocknungsvorgängen bleibt der Ablauf zwar gleich. Allerdings beeinflussen die von den Materialien gebildeten Aggregate und Kristalle den weiteren Verlauf der Strukturbildung. Eine langsamere Strukturbildung wirkt sich positiv auf die Effizienz der Solarzellen aus.

Die Forscher wollen nun die gewonnenen Kenntnisse der Abläufe nutzen, um gezielt mit weiteren Parametern die Kontrolle über die Anordnung der Materialien zu bekommen. Diese Ergebnisse können dann in die industrielle Herstellung übertragen und diese damit optimiert werden.

Publikation:
Organic Solar Cells: Following the Morphology Formation In Situ in Printed Active Layers for Organic Solar Cells, Pröller et al., Advanced Energy Materials, Volume 6, Issue 1, January 2016.
DOI: 10.1002/aenm.201501580

Kontakt:
Dr. Eva M. Herzig
Technische Universität München
Munich School of Engineering
Tel: +49-(0)89-289-13831
eva.herzig@ph.tum.de
www.opv.mse.tum.de

Weitere Informationen:

https://mediatum.ub.tum.de/?id=1289526#1289526 Bilder zum Download
http://onlinelibrary.wiley.com/wol1/doi/10.1002/aenm.201501580/full Link zum Paper

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten