Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Renaissance der Eisen-Luft-Batterie

03.11.2017

Jülicher Forscher zeigen Lade- und Entladereaktionen im laufenden Betrieb mit Nanometer-Präzision

Eisen-Luft-Batterien versprechen eine deutlich höhere Energiedichte als heutige Lithium-Ionen-Batterien. Ihr Hauptbestandteil, Eisen, ist zudem ein häufig vorkommendes und somit günstiges Material. Wissenschaftler des Forschungszentrums Jülich sind eine der treibenden Kräfte bei der Neuerforschung des seit den 1970er Jahren bekannten Konzepts.


Aufnahme mittels in-situ-Rasterkraft-Mikroskopie: Veränderung der Elektroden-Oberfläche über vier Lade- / Entladezyklen (Redox-Zyklen) hinweg

Copyright: Forschungszentrum Jülich / H. Weinrich


Gravimetrische und volumetrische Energiedichten verschiedener Metall-Luft-Batteriesysteme im Vergleich zu Lithium-Ionen-Batterien und Benzin

Copyright: Forschungszentrum Jülich / H. Weinrich


Schematische Darstellung des Messprinzips: Die Spitze des elektrochemischen in-situ-Rasterkraft-Mikroskops scannt die Oberfläche der Eisen-Elektrode. Über die Ablenkung eines reflektierten Laserstrahls werden räumliche Unebenheiten detektiert und im Laufe mehrerer Zyklen miteinander verglichen. Copyright: Forschungszentrum Jülich / H. Weinrich

Zusammenarbeit mit dem US-amerikanischen Oak Ridge National Laboratory gelang es ihnen, mit Nanometer-Präzision zu beobachten, wie sich im laufenden Betrieb Ablagerungen an der Eisen-Elektrode bilden. Ein vertieftes Verständnis der Lade- und Entladereaktionen gilt als Schlüssel für die Weiterentwicklung des wiederaufladbaren Batterietyps bis zur Marktreife. Die Ergebnisse sind im renommierten Fachmagazin Nano Energy erschienen.

Unter anderem wegen unüberwindbarer technischer Schwierigkeiten war die Forschung zu Metall-Luft-Batterien in den 1980er Jahren für lange Zeit ins Stocken geraten. In den letzten Jahren stieg das Forschungsinteresse jedoch rapide wieder an. Eisen-Luft-Batterien beziehen Energie aus der Reaktion von Eisen mit Sauerstoff.

Das Eisen oxidiert dabei ganz ähnlich wie beim Rosten. Der dafür benötigte Sauerstoff kann aus der Umgebungsluft bezogen werden und muss nicht in der Batterie vorgehalten werden. Diese Materialersparnis ist der Grund, warum Metall-Luft-Batterien enorme Energiedichten erzielen.

Für Eisen-Luft-Batterien wird eine theoretische Energiedichte von über 1.200 Wh/kg vorhergesagt. Zum Vergleich: Aktuelle Lithium-Ionen-Akkus kommen auf etwa 600 Wh/kg bzw. 350 Wh/kg, wenn man das Gewicht des Zellgehäuses mit berücksichtigt. Lithium-Luft-Batterien, die technisch noch deutlich schwieriger und aufwendiger zu realisieren sind, können sogar bis zu 11.400 Wh/kg erreichen.

In Bezug auf die volumetrische Energiedichte schneiden Eisen-Luft-Akkus sogar noch besser ab. Mit 9.700 Wh/l ist diese fast fünfmal höher als die heutiger Lithium-Ionen-Akkus (2.000 Wh/l). Selbst Lithium-Luft-Batterien erreichen hier „nur“ 6.000 Wh/l. Eisen-Luft-Batterien sind folglich insbesondere für vielfältige mobile Anwendungen interessant, bei denen der Platzbedarf eine große Rolle spielt.

„Wir konzentrieren uns mit unserer Forschung ganz bewusst auf Batterietypen aus Materialien, die sehr häufig in der Erdkruste vorkommen und in großer Menge gefördert werden“, erklärt Institutsleiter Prof. Rüdiger-A. Eichel. „Versorgungsengpässe sind so nicht zu erwarten. Damit verbunden ist zudem ein Kostenvorteil, der sich direkt auf die Batterie übertragen lässt – insbesondere für großskalige Anwendungen, etwa für stationäre Anwendungen zur Stabilisierung des Stromnetzes oder die Elektromobilität.“

Schwierige Bedingungen für die Analyse

Die nun gewonnenen Erkenntnisse der Jülicher Forscher schaffen eine neue Basis, um die Eigenschaften der Batterie gezielt zu verbessern. Mittels sogenannter elektrochemischer in-situ-Rasterkraftmikroskopie am Center for Nanophase Materials Sciences des US-amerikanischen Oak Ridge National Laboratory konnten sie mit Nanometer-Präzision beobachten, wie sich Ablagerungen aus Eisenhydroxid-Partikeln (Fe(OH)2) an der Eisenelektrode unter Bedingungen bilden, wie sie auch beim Laden und Entladen der Batterie vorherrschen.

„Der hohe pH-Wert von 13,7 stellt schon eine grenzwertige Bedingung für das Instrument dar“, erläutert Henning Weinrich vom Jülicher Institut für Energie- und Klimaforschung (IEK-9). „In Oak Ridge waren wir die ersten, die ein derartiges Experiment unter realistischen Bedingungen durchführen konnten“, so Weinrich, der für die Messungen drei Monate lang in die USA gereist war.

Ablagerungen erhöhen Kapazität

Die Leistung der Batterie verringert sich durch die Ablagerungen nicht. Im Gegenteil: Weil die nanoporöse Schicht die aktive Oberfläche der Elektrode vergrößert, trägt sie dazu bei, dass sich die Kapazität nach jedem Lade- und Entladezyklus ein klein wenig erhöht. Durch die Untersuchungen erhalten die Forscher von diesem Schichtwachstum nun erstmals ein vollständiges Bild. „Bis jetzt war man davon ausgegangen, dass sich die Ablagerungen beim Laden wieder zurückbilden. Doch das ist ganz offensichtlich nicht der Fall“, erläutert Dr. Hermann Tempel vom Jülicher Institut für Energie- und Klimaforschung (IEK-9). Zudem lässt sich nun erstmals ein direkter Zusammenhang zwischen der Schichtbildung an der Elektrodenoberfläche und den elektrochemischen Reaktionen nachweisen.

Bis zur Marktreife ist es aber noch ein weiter Weg. Elektroden aus Eisen lassen sich isoliert in Laborversuchen zwar schon ohne größere Leistungsverluste über mehrere Tausend Zyklen hinweg betreiben. Vollständige Eisen-Luft-Batterien, die als Gegenpol mit einer Luft-Elektrode ausgestattet sind, halten bis jetzt aber nur 20 bis 30 Zyklen lang durch.

Die Ergebnisse wurden im Rahmen Projekts „Hochtemperatur- und Energiematerialien“ finanziert, das durch das Bundesministerium für Bildung und Forschung gefördert wurde und durch eine Kooperationsvereinbarung zwischen dem Oak Ridge National Laboratory (ORNL) und dem Forschungszentrum Jülich ermöglicht. Beide Einrichtungen arbeiten bereits seit 2008 auf verschiedenen wissenschaftlichen Gebieten eng zusammen.

Originalpublikation:

Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries
Henning Weinrich, Jérémy Come, Hermann Tempel, Hans Kungl, Rüdiger-A. Eichel, Nina Balke
Nano Energy 41 (available online 10 October 2017), DOI: 10.1016/j.nanoen.2017.10.023

Weitere Informationen:

Institut für Energie- und Klimaforschung, Grundlagen der Elektrochemie (IEK-9)
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory

Ansprechpartner:

Prof. Dr. Rüdiger-A. Eichel
Leiter des Instituts für Energie- und Klimaforschung, Grundlagen der Elektrochemie (IEK-9)
Tel.: +49 2461 61-5124
E-Mail: Sekretariat-Eichel@fz-juelich.de

Dr. Hermann Tempel
Institut für Energie- und Klimaforschung, Grundlagen der Elektrochemie (IEK-9)
Tel.: +49 2461 61-96570
E-Mail: h.tempel@fz-juelich.de

Henning Weinrich
Institut für Energie- und Klimaforschung, Grundlagen der Elektrochemie (IEK-9)
Tel.: + 49 2461 61-96753
E-Mail: h.weinrich@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Forschungszentrum Jülich, Unternehmenskommunikation
Tel.: +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2017/2017-11-3-eisen-luft-batterie.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Vorhersage von Kristallisationsprozessen soll bessere Kunststoff-Bauteile möglich machen
20.06.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Heiratsschwindel unter Oxiden
20.06.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics