Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Quantenmechanik zu besseren elektronischen Materialien

20.07.2012
Das Element Bismut hat exotische Eigenschaften, die es interessant machen für energieeffiziente elektronische Bauteile wie schnellere Computer.
Um praxistauglich zu sein, muss ein Material jedoch auch grundsätzlich tolerant sein gegenüber Verunreinigungen. Das konnten zwei Forscher vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) nun erstmals für Bismut nachweisen. Ihre Ergebnisse haben sie in den Physical Review Letters (Ausgabe 108, 2012) veröffentlicht.

Gemeinsam mit dem amerikanischen Brookhaven National Laboratory stellten CENIDE-Forscher um Prof. Dr. Michael Horn-von Hoegen zunächst eine extrem glatte Bismutschicht her, mit überraschenden Eigenschaften: Egal wie dick die Bismutschicht ist, ihr elektrischer Widerstand bleibt immer gleich, da der Strom ausschließlich in einer dünnen Schicht direkt an der Oberfläche fließt. Daher ist dies ein ideales System, um zu testen, wie sich Verunreinigungen auf der Oberfläche auf den Elektronentransport, also den Stromfluss, auswirken.

Um das herauszufinden, haben die Wissenschaftler weitere Bismutatome auf die zuvor so perfekt glatte Schicht aufgebracht. Dafür waren Temperaturen von rund -190 °C notwendig und zusätzlich ein Vakuum, das noch weniger Moleküle enthält als das Vakuum im Weltall. Die Atome setzten sich auf der vormals glatten Oberfläche ab wie Sandkörner auf einer Fliese. Doch sie sind beweglich und liefen daher zu „Inseln“ zusammen, die aus vielen nebeneinanderliegenden Atomen bestanden.
Elektrische Messungen ergaben das zweite erstaunliche Ergebnis: Egal, ob ein Elektron bei seinem Weg auf ein einzelnes Atom oder eine ganze Insel trifft, es wird immer auf die gleiche Weise gestreut, das heißt von seiner Bahn abgelenkt. Das ist verwunderlich, denn unsere Intuition sagt uns, dass ein größeres Hindernis eigentlich häufiger getroffen werden und damit stärker streuen müsste. Prof. Dr. Axel Lorke, der die Inselbildung am Computer modelliert hat, erklärt das Phänomen so: „Wenn Sie auf der Autobahn fahren, ist es auch egal, ob auf einmal ein Stuhl oder ein liegengebliebener LKW auf der Fahrbahn steht – bremsen müssen Sie in beiden Fällen.“ Horn-von Hoegen ergänzt: „Das Überraschende ist jedoch, dass Sie um einen LKW eine weit größere Kurve fahren würden als um einen Stuhl, um im Beispiel zu bleiben. Das tut das Elektron hier eben nicht, es weicht immer gleich weit aus.“

Erste Erklärungen der beiden Experimentalphysiker basieren auf der Quantenphysik, die besagt, dass Elektronen sowohl Teilchen- als auch Welleneigenschaften haben. Und genauso wie Meereswellen an einer Kaimauer reflektiert werden, treffen auch die Elektronenwellen auf die atomaren Inseln und werden dort gestreut. Und jedes gestreute Elektron vermindert den Stromfluss durch das Material. Horn-von Hoegen, Spezialist für Mikroskopie und Kristallwachstum, ist es gelungen, das Elektronen-Wellenmuster um kleine und große Inseln zu vermessen. Das erstaunliche Resultat: Sie sind nahezu unabhängig von der Inselgröße. Das erklärt, warum aus Sicht der Elektronen alle Hindernisse gleich aussehen.
Ein weiteres Ergebnis beweist, dass die Wechselwirkung zwischen Elektron und Insel extrem klein ist: Nur jedes hundertste Elektron wird überhaupt gestreut. Damit sind die Atominseln für Elektronen leichter zu passieren als eine Fensterscheibe für Licht (dort beträgt die Reflexion etwa 4 Prozent). Dies ist bedeutend für elektronische Bauteile der Zukunft. Denn je weniger die Elektronen gestreut werden, desto schneller lässt sich der Strom schalten und desto weniger elektrische Leistung wird benötigt.

Redaktion und weitere Informationen:
Birte Vierjahn, Tel. 0203/379-1456, birte.vierjahn@uni-due.de

Katrin Koster | Universität Duisburg-Essen
Weitere Informationen:
http://www.uni-due.de

Weitere Berichte zu: Atom Bauteile Bismut Bismutschicht Elektron Lkw Quantenmechanik Schicht Stromfluss Vakuum Verunreinigung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kampf dem Plastik mit Verpackungen aus Seetang
15.12.2017 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

nachricht Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung
14.12.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik