Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Nano-Material eignet sich speziell für Brennstoffzellen

15.09.2009
Mit ihren halbleitenden Eigenschaften wecken Schichten aus Titandioxidröhrchen bereits seit einigen Jahren Interesse, da sie beispielsweise für den Einsatz in der Bio- oder der Solarzellentechnik besonders geeignet sind.

Nun können sie eine neue Qualität erwerben, die ihnen bisher fehlte: eine elektrische Leitfähigkeit, die der von Metallen gleicht.

Ein Team der Universität Erlangen-Nürnberg und der Universität Turku in Finnland borgt dazu die Leitfähigkeit, die Kohlenstoff mitbringt, und baut sie in die Titanverbindung ein. Die Röhrenstruktur bleibt dabei, wie Prof. Dr. Patrik Schmuki vom Erlanger Lehrstuhl für Korrosion und Oberflächentechnik erläutert, nahezu unverändert.

In der Zeitschrift Angewandte Chemie1) berichtet Schmukis Mitarbeiter Robert Hahn, dass die Verwandlung von halbleitenden zum leitenden Material mittels eines relativ einfachen Verfahrens möglich ist. Die Titandioxid-Nanoröhrchen lassen sich zu einer kohlenstoffhaltigen Titan-Oxycarbid-Verbindung umsetzen. Dazu behandeln die Forscher sie bei 850°C mit Acetylen. Dieser Prozess wird, da eine kohlenstoffreiche Verbindung entsteht, als Carbonisierung bezeichnet. "Es handelt sich aber nicht einfach um eine Dotierung von Titandioxid mit Kohlenstoff­atomen," stellt Schmuki klar. "Auch wenn die geordnete Röhrenstruktur kaum verändert wird, entsteht doch eine neue chemische Verbindung. Dieses Titan-Oxycarbid kann als eine feste Mischung aus Titancarbid und verschiedenen Titanoxiden interpretiert werden."

700 Prozent besser
Das Carbonisieren schafft einen neuartigen Werkstoff mit halbmetallischen Eigenschaften, der zudem deutlich härter ist als die Ausgangsverbindung. Seine hohe elektrische Leitfähigkeit sowie günstige elektrochemische Charakteristika machen ihn zu einem interessanten neuen Elektrodenmaterial. Besonders attraktiv erscheint der Einsatz in Methanol-Brennstoffzellen, deren Leistungsfähigkeit drastisch erhöht werden könnte: Auf 700 Prozent schätzt Prof. Schmuki die Steigerung der Aktivität des Katalysators für die Methanol-Oxidation. "Als Alternative für Kohlenstoff als übliches Trägermaterial an katalytischen Elektroden sind Titandioxid-Nanoröhrchen schon seit längerem im Gespräch," so Schmuki. "Aber unser neues leitfähiges Oxycarbid schlägt dies um Längen."

1) doi: 10.1002/anie.20902207

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 26.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel "familiengerechte Hochschule".

Ute Missel | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz