Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Akzent in der Forschungslandschaft

28.04.2014

Eröffnung des Projekthauses NanoBioMater

Biokompatible Funktionsmaterialien für die Medizintechnik, Diagnostik und Umweltanalytik stehen im Fokus des neuen Projekthauses NanoBioMater, das an der Universität Stuttgart am 25. April 2014 feierlich eröffnet wurde. Forscher aus Naturwissenschaften, Materialwissenschaften und Ingenieurwissenschaften werden darin künftig gemeinsam neuartige Biohybridmaterialien entwickeln.


NanoBioMater

Universität Stuttgart

Drei Viertel der Fördermittel, 750.000 Euro, kommen von der Carl-Zeiss-Stiftung Stuttgart, mit 250.000 Euro unterstützt die Universität Stuttgart den interdisziplinären Ansatz. Das Projekthaus baut auf gemeinsamen Vorarbeiten der Projektpartner auf, die in den Jahren 2009 bis 2013 mit insgesamt 600.000 Euro vom Ministerium für Wissenschaft, Forschung und Kunst Baden Württemberg unterstützt wurden.

„Wir freuen uns, mit diesem Projekt innovative Forschungsstrukturen an der Universität Stuttgart gezielt fördern zu können“, begrüßt Prof. Wolfram Ressel, Rektor der Universität, den offiziellen Auftakt von NanoBioMater und dankt der Carl-Zeiss-Stiftung für ihr Engagement.

Prof. Hans-Joachim Werner, Prorektor für Struktur und Forschung der Universität Stuttgart, betonte in seiner Festansprache, dass das Projekthauses zu einer verstärkten Integration von Natur- und Ingenieurwissenschaften an der Universität Stuttgart führen wird und erklärte: „Das übergeordnete wissenschaftliche Ziel der Forschungspartner besteht darin, bestehende Forschungseinheiten in eine neue Organisationsstruktur zu integrieren, die interdisziplinäre Entwicklungen im Bereich der weichen Funktionsmaterialien ermöglicht, welche für spätere klinische Anwendungen von besonderem
Interesse sind.“

„Unser Projekt soll längerfristig in einen Forschungsverbund münden, doch jetzt sind wir alle zunächst einmal froh darüber, dass unser NanoBio-Projekthaus für vier Jahre finanziell auf stabilen Füßen steht“, unterstrich Prof. Sabine Laschat, Leiterin des Instituts für Organische Chemie (IOC) der Uni Stuttgart, die gemeinsam mit Prof. Thomas Hirth, dem Leiter des Institutes für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP) das Vorhaben federführend vorangetrieben hat.

Die wissenschaftliche Aufmerksamkeit gilt synthetisch-biogenen Hybrid-Hydrogelen. Dies sind sehr weiche, wasserhaltige Materialien aus unterschiedlichen Kombinationen chemischer und biologischer Bausteine, herstellbar in nahezu beliebigen Strukturen und Formen. Sie bieten damit einen idealen Ausgangspunkt für die Entwicklung neuer komplexer Biomaterialien.

„Diese Hydrogele ähneln den Geweben im menschlichen Körper und können als Basis für die Entwicklung von Organersatz dienen“, erklärt Prof. Günter Tovar vom IGVP, der gemeinsam mit Prof. Christina Wege vom Institut für Biomaterialien und biomolekulare Systeme (IBBS) in einem Kernteam das Projekthaus koordiniert. Nicht nur in der Biomedizin bieten die Hybrid-Hydrogele neue Chancen, auch in der miniaturisierten Diagnostik von Umwelt-, Lebensmittel- und Medizinanalytik eröffnen sie neue Möglichkeiten. „Nano-Bausteine aus der Welt der Pflanzenviren dienen als Gerüstkomponenten, die dem Hydrogel Stabilität und sensorische oder bioaktive Eigenschaften verleihen sollen“, umschreibt Biologin Wege die Wirksamkeit des Projekthaus-Ansatzes.

Neuartig ist nicht nur der Forschungsgegenstand des Projekthauses NanoBioMater, sondern auch die Art der Zusammenarbeit: Vier interdisziplinär arbeitende Postdoktoranden sorgen als Teamleiter in gemeinsamen Labors für den Input aus unterschiedlichen Fachperspektiven. Zudem stehen die vier Forscher gemeinsam mit den involvierten Professoren für eine intensive Vernetzung der beteiligten universitären Institute, da sie jeweils noch an zwei weiteren Instituten angesiedelt sind.

Eine wertvolle Bereicherung des Projekthauses bietet neben den direkt beteiligten Instituten IBBS, IGVP, IOC sowie den Instituten für Materialwissenschaft (IMW), für Physikalische Chemie (IPC), für Polymerchemie (IPOC) und für Technische Biochemie (ITB) das enge Netzwerk aus weiteren kooperierenden Instituten im Umfeld, von der Physik bis hin zum Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB und dem Max-Planck-Institut für Intelligente Systeme sowie zahlreichen externen Kooperationspartnern in der Region Stuttgart und dem ganzen Bundesgebiet. Dabei spielen nicht nur wissenschaftliche Einrichtungen eine besonders wichtige Rolle, auch Wirtschaftsunternehmen sind mit dem Projekthaus NanoBioMater gut vernetzt.

Den Gastvortrag bei der feierlichen Eröffnung hielt Prof. Tanja Weil, Leiterin des Institutes für Organische Chemie, Lehrstuhl Makromolekulare Chemie und Biomaterialien der Universität Ulm zum Thema "Schaltbare Biopolymere aus biogenen Bausteinen für medizinische Anwendungen".

Weitere Informationen:
Prof. Günter Tovar, Universität Stuttgart, Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP), Tel. 0711/970-4109, E-Mail: Guenter.Tovar@igvp.uni-stuttgart.de


Prof. Christina Wege, Universität Stuttgart, Institut für Biomaterialien und biomolekulare Systeme (IBBS), Tel. 0711/685-65073, E-Mail: Christina.Wege@bio.uni-stuttgart.de


Dr. Hans-Herwig Geyer, Universität Stuttgart, Leiter Hochschulkommunikation und Pressesprecher, Tel. 0711/685-82555, E-Mail: hans-herwig.geyer@hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie