Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Optik mit Metamaterialien

12.01.2010
Metamaterialien haben besondere optische Eigenschaften: Zum Beispiel brechen sie Licht in eine andere Richtung als alle natürlichen Materialien, sie haben also einen negativen Brechungsindex. Mit dem EU-Projekt NIM_NIL wollen Wissenschaftler des ISAS solche Metamaterialien für sichtbares Licht herstellen.

Eine technologische Vision soll Wirklichkeit werden: Wissenschaftler aus Deutschland, Österreich, Serbien, Italien und Griechenland wollen so genannte Metamaterialien mit negativem Brechungsindex (Negative Index Materials, NIM) für den sichtbaren Spektralbereich herstellen. An dem EU-Projekt mit dem Titel NIM_NIL sind auch Forscher des Leibniz-Instituts für Analytische Wissenschaften (ISAS) am Standort Berlin beteiligt. Als Experten für zerstörungsfreie optische Charakterisierung werden sie die optischen Eigenschaften der neuen Materialien analysieren.

Metamaterialien beflügeln seit Jahrzehnten die Phantasie von Wissenschaftlern, denn sie haben besondere optische Eigenschaften - etwa einen negativen Brechungsindex. Das bedeutet, dass sie elektromagnetische Strahlung (zu der auch das sichtbare Licht gehört) in eine andere Richtung brechen können als alle natürlichen Materialien. Damit sind sie für zahlreiche optische Anwendungen interessant, besonders für die Mikroskopie. "Perfekte" Linsen aus Metamaterialien könnten die Auflösung von Mikroskopen um ein Vielfaches verbessern.

Lange Zeit allerdings existierten solche Metamaterialien nur in der Theorie. Erst in den vergangenen Jahren wurden erste NIMs für langwellige Strahlung hergestellt. Durch die gezielte Anordnung von nanometergroßen Strukturen können sie etwa Mikrowellenstrahlung oder Licht im nahen Infrarotbereich in die gewünschte Richtung brechen.

Ziel des von der PROFACTOR GmbH aus Österreich koordinierten NIM_NIL-Projekts ist es nun, Metamaterialien herzustellen, die in der Lage sind, sichtbares Licht zu brechen. Um sie auch für optische Bauelemente einsetzen zu können, wollen die Wissenschaftler möglichst großflächige NIMs erzeugen. Dazu müssen die beteiligten Forschungsgruppen und Firmen zunächst das Herstellungsverfahren und das Design optimieren. Die nanometergroßen Bauteile, aus denen ein Metamaterial besteht, sollen mittels Nanoimprint-Lithografie (NIL) entstehen. Mit dieser Technik kann man mikroskopisch kleine Strukturen wie mit einem Stempel auf einer großen Fläche aufprägen, so dass das Verfahren auch für die Massenproduktion einsetzbar ist.

Die optische Analyse der präparierten Materialien erfolgt dann hauptsächlich am ISAS - in Kooperation mit der Johannes Keppler Universität in Linz, der Sentech GmbH in Berlin und dem Institute of Physics an der Universität von Belgrad. Dazu müssen Dr. Hinrichs und seine Kollegen ihre optischen Messmethoden und die Auswertungsstrategien an die neuen Materialien anpassen. Sie werden dafür ein speziell vom ISAS entwickeltes Synchrotron-Ellipsometer bei BESSY in Berlin nutzen.

Bei dem ellipsometrischen Verfahren wird linear polarisiertes Licht auf eine Probe - in diesem Fall auf die Oberfläche des Metamaterials - geschickt und das reflektierte Licht untersucht. Aus den veränderten Polarisationseigenschaften wollen die Berliner Wissenschaftler die optischen Eigenschaften der Probe ableiten. "Hierfür sind unsere Ellipsometrie-Verfahren von allen Methoden am besten geeignet", sagt Hinrichs. "Wie gut sie allerdings für die Charakterisierung von Metamaterialien funktionieren, das muss das Projekt noch zeigen." NIM_NIL soll über drei Jahre laufen und wird von der EU mit insgesamt 3,4 Mio. Euro gefördert.

Hintergrundinfos:

Aus dem Brechungsindex lässt sich schließen, in welchem Winkel Lichtstrahlen von ihrer ursprünglichen Richtung abgelenkt werden, wenn sie durch eine Oberfläche in ein anderes Medium eintreten, zum Beispiel von Luft in Wasser. Bei allen natürlichen Materialien ist der Brechungsindex positiv: Das Licht wird in einem Winkel zwischen 0° und 90° zur Oberfläche gebrochen.

Materialien mit negativem Brechungsindex würden dagegen das Licht bis hinter das Lot "knicken", also in einem Winkel von mehr als 90°. Möglich wird das nur durch eine gezielte Anordnung winzigster Strukturen mit bestimmten elektrischen und magnetischen Eigenschaften. Diese Strukturen können die elektromagnetische Strahlung beeinflussen - das wird jedoch umso schwieriger, je kleiner die Wellenlänge der Strahlung ist. Das elektromagnetische Spektrum umfasst Wellenlängen von mehreren Kilometern (Radiowellen) bis zu wenigen Femtometern (einige Bestandteile der Höhenstrahlung). Der Bereich des sichtbaren Lichts erstreckt sich über Wellenlängen von etwa 380 bis 770 Nanometern; 1 Nanometer entspricht dabei 10-9 Metern.

Das Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. ist ein unabhängiges Forschungsinstitut mit Standorten in Dortmund und Berlin. Es gehört der Leibniz-Gemeinschaft an und entwickelt Methoden und Geräte für analytische Anwendungen im Bereich der Lebens- und der Materialwissenschaften. Die Wissenschaftler am Standort Berlin-Adlershof sind Experten für optisch-spektroskopische Messverfahren.

Am Projekt NIM_NIL sind beteiligt:
Profactor GmbH, Österreich (Projektkoordinator)
Johannes Kepler-Universität Linz, Österreich
Friedrich Schiller Universität Jena, Deutschland
Institute of Physics, Belgrade University, Serbien
Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Berlin
Sentech Instruments GmbH, Deutschland
Foundation for Research & Technology, Institute of Electronic Structure and Laser, Griechenland
Institute of Inorganic Methodologies and of Plasmas, Italien
Micro resist technology GmbH, Deutschland
Jenoptik Polymer Systems GmbH, Deutschland
Verantwortlich für den Text: Tinka Wolf, Leibniz-Institut für Analytische Wissenschaften - ISAS e.V.

Kontakt:

Dr. Karsten Hinrichs
Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V.
phone: +49 (0)30 6392-3541
karsten.hinrichs@isas.de
Tinka Wolf
Referentin für Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V.
Phone: +49 (0)231 1392-234
E-Mail: tinka.wolf@isas.de

Tinka Wolf | idw
Weitere Informationen:
http://www.isas.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kampf dem Plastik mit Verpackungen aus Seetang
15.12.2017 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

nachricht Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung
14.12.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik