Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Erfindung aus Bremen: mithilfe von CT-Daten binnen Stunden Keramik-Ersatzknochen herstellen

29.09.2010
Mithilfe der Daten aus dem Computertomografen (CT) in wenigen Stunden einen Ersatzknochen aus Keramik herstellen – das ist keine Science-Fiction-Szene, sondern in Bremer Uni-Laboren nun bald möglich.

Mit einer Förderung des Bundesministeriums für Wirtschaft und Technologie (BMWi) und unterstützt von der Dienstleistungsagentur für wissenschaftliche Erfindungen aus Bremen und Nord-West-Niedersachsen InnoWi GmbH bringen die Forscher das neue Verfahren jetzt in Richtung Marktreife.

Die Idee für das neue „Rapid-Prototyping-Verfahren zur Herstellung endkonturnaher Bauteile durch schichtweises Gelieren keramischer Suspensionen“ hatte Dr.-Ing. Dietmar Koch aus dem Fachgebiet Keramische Werkstoffe und Bauteile (Leitung: Professor Dr.-Ing. Kurosch Rezwan) am Fachbereich Produktionstechnik der Universität Bremen. Koch und sein Kollege Dipl.-Ing. Lars Andresen wurden 2003 im Wettbewerb „CAMPUSideen 03“ für das Konzept ausgezeichnet, gemeinsam mit Dipl.-Ing. Lars Henkel ging es dann an die Umsetzung. Inzwischen können sich die Wissenschaftler über die Erteilung sowohl eines deutschen als auch eines europäischen Patentes für ihre Entwicklung freuen.

Die InnoWi hatte die Wissenschaftler bei dem Patentantrag unterstützt, im Rahmen der Förderung durch das SIGNO-Programm (Schutz von Ideen für die gewerbliche Nutzung) des BMWi weiter begleitet, und zudem hat die Patentverwertungsagentur für eine zusätzliche „Weiterentwicklungsförderung“ das Marktpotential der Erfindung bewertet. Damit will das BMWi patentrechtlich geschützte Ideen, deren Verwertungschancen sich mit relativ geringem Aufwand deutlich erhöhen lassen, zum Sprung auf den Markt verhelfen. Nun wurde der von den Forschern gestellte und der InnoWi begleitete Projektantrag in Höhe von 40.000 Euro bewilligt.

Nach dem Erstellen des Prototypen (Rapid Prototyping): einfrieren statt „backen“

„Rapid-Prototyping-Verfahren zur Herstellung keramischer Formkörper nach dem Gefriergelierverfahren“ oder kurz „Rapid Freeze Gelation“ (RFG) nennt sich die Erfindung. Mit dem Verfahren lassen sich in einer „RFG-Anlage“ dreidimensionale Strukturen direkt aus digitalen 3D-Zeichnungen erzeugen. Am Ende des nur wenige Stunden dauernden Prozesses steht ein keramisches Bauteil, dessen Festigkeit in der Regel für Anwendungen wie zum Beispiel in der Medizin als Knochenersatzwerkstoff ausreichend ist. Die Dauer des Prozesses ist abhängig von Größe und Komplexität des zu fertigenden Objektes.

Und so funktioniert das „RFG-Verfahren“: Nach den Vorgaben einer digitalen 3D-Zeichnung und gesteuert durch einen Rechner wird die pastöse Keramik-Rohmasse (Schlicker), durch eine Düse in der RFG-Anlage auf einer gekühlten Plattform gezielt, schichtweise abgelegt und die gewünschte Form aufgebaut. So entsteht nach und nach die Struktur, wie sie der Datensatz zum Beispiel aus einem CT vorgibt. Noch befindet sich das Objekt im so genannten Grünzustand und heißt „Grünling“. Der wird normalerweise in einem nächsten Produktionsschritt gesintert, also für eine gewisse Zeit auf gut eineinhalbtausend Grad erhitzt. Beim Sintern, einem Urformverfahren, werden die einzelnen, im Schlicker enthaltenen Pulverpartikel quasi „zusammengebacken“. Damit erhält das Werkstück die erforderliche Festigkeit. Das neue Verfahren geht hier andere Wege: Statt auf „Backen“ setzten die Bremer Wissenschaftler zur Verfestigung aufs Einfrieren.

„Weil insbesondere beim Sintern komplex geformter Bauteile hohe Schrumpfung und hoher Verzug auftreten können, lässt sich keine ausreichende endkonturgetreue Herstellung sicherstellen“, sagt Koch. „Das wissen alle, die schon einmal getöpfert haben“, erklärt er. Nach dem Brennen sei die Vase plötzlich etwas kleiner, oder der Deckel, der als Grünling noch auf den Topf passte, sei nun verzogen. Das neue Verfahren unterscheide sich von den herkömmlichen nun besonders dadurch, dass beim Schlicker sehr hohe Feststoffgehalte von 73 Volumenprozent eingestellt werden könnten und dessen Fließfähigkeit ohne den Zusatz von Bindemitteln sichergestellt werden könne.

„Damit erreichen wir eine hohe Grünfestigkeit, sodass der erzeugte Körper nicht mehr gesintert werden muss, sondern mit der ‚Rapid Freeze Gelation‘-Technik eine für viele Einsatzmöglichkeiten schon ausreichende Festigkeit erhält. In diesem Fall ist es sogar möglich, direkt bei der Formgebung Proteine oder Mikroorganismen hinzuzugeben, um eine zusätzliche Biofunktionalität der Produkte zu erreichen und sozusagen eine „lebende Keramik“ herzustellen. Und falls das Objekt dann zur weiteren Verfestigung doch noch gesintert wird, ist der Sinterungsschwund wesentlich geringer als bei den heute üblichen Verfahren.“

Biokompatible Keramiken – für Produktion von Knochen, Zähnen, Filtern, Katalysatoren …

Noch erlaubt die RFG-Anlage im Labor unter anderem wegen ihrer recht einfachen Ansteuerung der Achsen nur das Nachbilden eher simpler Geometrien wie Gitterstrukturen. Mit den Fördergeldern kann die Forschergruppe das System nun weiter ausbauen und gemeinsam mit der InnoWi nach Entwicklungspartnern sowie Lizenznehmern suchen. „Wir arbeiten daran, dass wir ausgehend von digitalen 3D-Datensätzen auch komplexere Bauteile erzeugen können“ sagt Koch. „Wir sind da noch lange nicht am Ende mit unseren Forschungen. In der Entwicklung steckt noch ein großes Potenzial. Das wollen wir erschließen, aber die Verbesserung der Anlagentechnik bedeutet für uns noch eine finanzielle Hürde.“

„Ein großes Anwendungsfeld sehen wir in der Herstellung detailgenauer, biokompatibler Keramikstrukturen zum Beispiel als Knochen- oder Zahnersatzmaterial in der Implantatmedizin“, sagt Birgit Funk, Innovationsmangerin von der InnoWi. Der Forschungstrend im Bereich Keramik gehe klar in die Richtung Biomaterialien. Ziele seien hier, die Biokompatibilität und Biofunktionalität von keramischen Implantaten und Knochenersatzmaterialien zu verbessern. „Da bietet die RFG-Anlage gleich zwei Vorteile: Erstens können mit ihr filigrane Strukturen hergestellt werden, die besonders als Knochenersatzmaterial geeignet sind. Und zweitens ist die Porosität des keramischen Werkstoffs beliebig einstellbar.“

(Sabine Nollmann)

Achtung Redaktionen: Weitere druckfähige Fotos finden Sie auch unter http://www.innowi.de/de/service/downloads oder erhalten sie über die Ansprechpartner und über Sabine Nollmann (mail@kontexta.de oder 0170 904 11 67)

Weitere Informationen und Ansprechpartner:

Birgit Funk (Innovationsmanagerin, InnoWi GmbH)
Telefon: 0421 96 007-14, E-Mail: birgit.funk@innowi.de
Dr.-Ing. Dietmar Koch, (Uni Bremen, Fachbereich Produktionstechnik, Keramische Werkstoffe und Bauteile)

Telefon: 0421 218-74 51, E-Mail: dkoch@ceramics.uni-bremen.de

Eberhard Scholz | idw
Weitere Informationen:
http://www.innowi.de
http://www.unitransfer.uni-bremen.de
http://www.ceramics.uni-bremen.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics