Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Art von Kunststoff?

13.02.2012
Für eine kleine Sensation in der Synthese-Chemie sorgen Wissenschaftler unter Leitung der ETH Zürich. Erstmals ist es gelungen, flächige Polymere herzustellen, die regelmässig angeordnet eine Art „molekularen Teppich“ im Nanometermassstab bilden.

Der Chemiker Hermann Staudinger postulierte 1920 an der ETH Zürich die Existenz von Makromolekülen, bei denen die gleichen Bausteine kettenförmig aneinandergereiht sind. Er erntete für die Idee dieser Polymeren – wie diese Art von Makromolekülen genannt wird – in Fachkreisen vorerst Hohn und Unverständnis. Und viele fragten sich, wofür man diese wohl brauchen könne.

Doch Staudinger sollte Recht bekommen: Heute, mehr als neunzig Jahre nach Staudingers Entdeckung, werden jährlich etwa 150 Millionen Tonnen Kunststoff – wie die Polymere landläufig genannt werden – hergestellt. Einer Forschungsgruppe unter Leitung von A. Dieter Schlüter, Professor, und Junji Sakamoto, Privatdozent am Institut für Polymere an der ETH Zürich, gelang nun ein entscheidender Durchbruch in der Synthese-Chemie der Polymere: Sie erzeugten erstmals flächige Polymere. Und wieder gilt es, nicht sofort nach dem Nutzen zu fragen, sondern die Entdeckung grundsätzlich zu erforschen.

Einen molekularen Teppich herstellen
Polymere entstehen, indem sich kleine einzelne Moleküle, sogenannte Monomere, durch chemische Reaktionen zu grossen Makromolekülen kettenförmig verbinden. Schlüter trieb schon seit seiner Habilitation die Frage um, ob Polymere ausschliesslich linear sein müssen oder ob man auch zweidimensionale Moleküle erzeugen könnte. Das heisst, die Moleküle wären dann nicht in einer Kette angeordnet, sondern würden eine Art Teppich bilden. In der Natur kommt ein zweidimensionales Polymer in Form von Graphen vor. Kohlenstoffatome gehen da jeweils drei Bindungen ein und bilden so ein wabenförmiges Muster. Das Problem: Graphen kann nicht kontrolliert synthetisiert werden. Als Schlüter und Sakamoto vor einigen Jahren an der ETH Zürich aufeinander trafen, suchten sie gemeinsam nach einer Antwort, wie man ein zweidimensionales Polymer herstellen könnte.

Wie Graphen müsste ein derartiges Polymer drei oder mehr Bindungen zwischen den sich regelmässig wiederholenden Molekülen haben. Die Wissenschaftler mussten herausfinden, welche Verbindungschemie und Umgebung sich für die Herstellung eines „molekularen Teppichs“ am besten eignet. Nach intensiven Analysen bisheriger Studien und Möglichkeiten entschieden sie sich dafür, einen Einkristall, das heisst einen Kristall mit einem homogenen Schichtgitter, zu verwenden.

Erst kristallisieren, dann kochen
Dem Doktoranden Patrick Kissel gelang es, spezielle Monomere herzustellen und diese in einem Einkristall zu kristallisieren. Er generierte hierfür photochemisch empfindliche Moleküle, für die eine solche Anordnung energetisch optimal ist. Diese wurden mit Licht mit einer Wellenlänge von 470 Nanometern bestrahlt und so wurde jede Schicht zum Polymeren. Danach kochten die Forschenden den Kristall in einem geeigneten Lösungsmittel, um die einzelnen Schichten voneinander abzutrennen. Mit jeder Schicht erhielten die Forschenden das gewünschte zweidimensionale Polymer. Dass es dem Team tatsächlich gelungen war, flächige Polymere mit regelmässigen Strukturen herzustellen, zeigten spezielle Untersuchungen am Elektronenmikroskop, die Empa-Forscher Rolf Erni und Marta Rossell von der ETH Zürich an der Empa durchführten.

Die Forscher haben die komplette strukturelle Kontrolle über die Monomere, wie es beispielsweise bei Graphen nie möglich wäre, da dort mit enorm hohen Temperaturen gearbeitet werden müsste. «Unsere synthetisch hergestellten Polymere sind zwar nicht leitfähig wie Graphen, dafür könnten wir sie aber beispielsweise zum Filtern kleinster Moleküle nutzen», sagt Sakamoto. In den regelmässig angeordneten Polymeren könnten winzige Hexagone entfernt werden, so dass dadurch eine Art Sieb entstehen würde. Zuerst müssen die Forscher jedoch einen Weg finden, grössere Mengen von noch grösseren Flächen des neuen Polymers herzustellen. Die Kristalle haben derzeit eine Grösse von 50 Mikrometern.
Unerforschte Physik
Bevor sich die Forscher jedoch über konkrete Anwendungen Gedanken machen können, gilt es nun, die Materialeigenschaften des neuen Polymers zu charakterisieren. Physiker sollen klären, wie sich ein zweidimensionales Polymer im Vergleich zu einem linearen Polymer verhält. Schlüter geht davon aus, dass zweidimensionale Polymere eine andere Physik und damit andere Eigenschaften haben könnten. Als Beispiel nennt er die Eigenschaft „Elastizität“: Ineinander verschlungene lineare Polymere ermöglichen, dass ein gespanntes Gummiband zurückschnappt, sobald es losgelassen wird. Beim flächigen Polymer dürfte das nicht funktionieren. Dafür könnte dieses andere Merkmale haben und es könnten sich damit neue Anwendungsbereiche auftun. «Wir haben mit der Herstellung des Polymers einen grossen Schritt in der Forschung gemacht, ganz unabhängig davon, was dieses neue Polymer alles kann. Wir lassen uns aber gerne überraschen», so Schlüter.

Original: Kissel P, Erni R, Schweizer WB, Rossell MD, King BT, Bauer T, Götzinger S, Schlüter AD & Sakamoto J: A two-dimensional polymer prepared by organic synthesis, Nature Chemistry (2012), advanced online publication, doi:10.1038/nchem.1265

Weitere Informationen

ETH Zürich
Prof. Dieter Schlüter
Institut für Polymere
Telefon: +41 44 633 63 80
dieter.schluter@mat.ethz.ch

Franziska Schmid | idw
Weitere Informationen:
http://www.ethz.ch
http://www.ethlife.ethz.ch/archive_articles/120213_2DPolymere_su/index

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften