Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanostrukturen: Kohle nach Maß

08.04.2015

Ein neues Syntheseverfahren ermöglicht es, gezielt verschiedene Nanostrukturen aus Kohlenstoff herzustellen

Sie sind klein und kommen als runde, schichtförmige oder faserartige Partikel daher. Und sie bestehen weitgehend aus dem chemischen Element Kohlenstoff. Die Rede ist von zum Teil ungewöhnlichen Kohlenstoffnanostrukturen, wie sie Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Golm bei Potsdam jetzt mit einem neuartigen Verfahren hergestellt haben.


Ein Rezept für Nanofasern: Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung stellen gezielt kugel-, schicht- oder faserartige Nanostrukturen her, indem sie verschiedene organische Lösungsmittel in einer heißen Salzschmelze karbonisieren. Bislang wurden bei der Karbonisierung nur Feststoffe eingesetzt, aus denen ausschließlich kugelförmige Nanopartikel entstanden.

© MPI für Kolloid- und Grenzflächenforschung

Die Forscher haben bereits besondere katalytische Eigenschaften ihrer Nanostrukturen nachgewiesen. So sind sie zum Beispiel in der Lage, den Energieaufwand für die elektrolytische Spaltung von Wasser zu reduzieren. Dies ist interessant, wenn es um die Speicherung etwa erneuerbarer Energien geht. Aufgrund der großen Hohlräume können sich die Wissenschaftler aber auch eine Verwendung ihrer Nanopartikel zur Speicherung von Gasen wie Kohlendioxid vorstellen.

Wenn man die Pizza zu spät aus dem Ofen holt, ist der Teig schwarz. Eine Verkohlung – aus den organischen Bestandteilen im Teig sind Moleküle mit hohem Kohlenstoffanteil geworden. Was in der heimischen Küche in aller Regel unerwünscht ist, kann bei manchen industriellen Prozessen gerade das Ziel sein. Die Gewinnung von Koks aus Kohle ist ein Beispiel für eine solche Karbonisierung, also einen Prozess, der den Kohlenstoffgehalt erhöht. Auch Industrieruße, wie sie etwa zum Einfärben von Autoreifen verwendet werden, weisen aufgrund gezielter unvollständiger Verbrennung hohe Kohlenstoffanteile auf.

Seit einigen Jahren arbeiten Wissenschaftler auch an der gezielten Synthese kohlenstoffreicher Nanomaterialien. Da solche Partikel sehr porös sind, mithin eine große spezifische Oberfläche besitzen und teilweise auch gut elektrischen Strom leiten, sind sie für viele Anwendungen interessant. Bisher erhält man bei gängigen Synthesen vor allem sphärische, also runde Kohlenstoffnanopartikel. Forschern am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam-Golm gelang es nun aber mit einem neuen Syntheseverfahren, nicht nur sphärische, sondern auch schicht- sowie faserförmige Strukturen zu erzeugen.

Die Wahl der Ausgangsstoffe bestimmt die Struktur der Partikel

Die Forscher gingen dabei von insgesamt zehn verschiedenen organischen Lösungsmitteln aus, die sie jeweils karbonisierten. „Dabei zeigte sich, dass wir die spätere räumliche Struktur der Partikel über die Wahl des Ausgangsstoffes steuern können“, so Tim Fellinger, der am Potsdamer Max-Planck-Institut die Gruppe „Carbon and Energy“ leitet.

Seine Gruppe erzeugte aber nicht nur vielfältige Nanostrukturen aus Kohlenstoff. Sie fand auch Wege, neben Kohlenstoff gezielt Atome anderer Elemente in ihren Produkten unterzubringen. So führten stickstoff- oder schwefelhaltige Lösungsmittel wie Pyridin oder Dimethylsulfoxid zu Nanokohlen, die bis zu 15 Massenprozent Stickstoff beziehungsweise Schwefel enthalten. Darüber hinaus haben die Forscher durch geeignete Zusätze auch Metalle wie Nickel, Kobalt oder Zink eingebaut – und sogenannte Nanokomposite erzeugt.

Nickel-Kohle-Komposite als Katalysatoren für die Wasserspaltung

Erste Versuche mit den Nanostrukturen bescheinigen vielen von diesen nützliche Eigenschaften. Weil die Gruppe um Fellinger sich auch mit Energiespeicherlösungen beschäftigt, untersuchten die Forscher beispielsweise die katalytischen Effekte der Nanokohlen auf die elektrochemische Spaltung von Wasser. Dabei erwiesen sich vor allem die Nickel-Kohle-Nanokomposite den gängigen Katalysatoren als ebenbürtig. „Sie wären aber vermutlich ökonomischer in der Herstellung als die bisher verwendeten auf Iridium-Basis“, sagt Fellinger. Mit einer katalytischen Wasserspaltung ließen sich zum Beispiel kurzfristig Überschüsse an elektrischer Energie in Form von Wasserstoff speichern. „Auch eine dezentrale und bedarfsorientierte Produktion von Wasserstoff ist mit wirtschaftlichen Katalysatoren denkbar“, so Fellinger. Potenziell gefährliche Transporte des Gases wären dann überflüssig.

Beeindruckt waren die Wissenschaftler auch davon, wie porös ihre Nanostrukturen sind und wie gut die Kohlenstoffpartikel etwa Gase aufnehmen. So adsorbieren einige Produkte Gase sogar besser als kommerzielle Aktivkkohle. Tim Fellinger findet das bemerkenswert: Anders als bei der Herstellung von Aktivkohlen üblich, werden keinerlei Maßnahmen in den Verkohlungsprozess integriert, die die Adsorptionseigenschaften fördern. Für Fellinger ergeben sich daraus vielfältige Einsatzgebiete. Unter anderem könnten die neuen Partikel bei der Entwicklung von Batterien der nächsten Generation Dienste leisten, also etwa bei Lithium-Schwefel- oder Lithium-Luft-Batterien.

Ein neuartiger Syntheseweg ermöglicht die Strukturvielfalt

Ausschlaggebend für die besondere Strukturvielfalt und die nützlichen Eigenschaften waren vor allem zwei Vorgehensweisen, mit denen Fellinger und seine Mitarbeiter jeweils Neuland betraten. Zum einen wählten die Forscher ein ungewöhnliches Reaktionsmilieu: Sie verwendeten über 500 Grad heiße Salzschmelzen, zum Beispiel flüssiges Zinkchlorid. Zum anderen karbonisierten sie flüssige Ausgangsstoffe. Bisher werden in der Regel Feststoffe karbonisiert, da dafür hohe Temperaturen nötig sind, bei denen sich organische Flüssigkeiten schlicht verflüchtigen. Wie sich zeigte, ermöglichen die Salzschmelzen dagegen die Karbonisierung direkt aus dem flüssigen Medium. Die Forscher injizierten dazu kostengünstige und laborübliche Lösungsmittel einfach in das flüssige Salz.

„Offenbar werden die Flüssigkeitsmoleküle beim Kontakt mit der Schmelze gespalten, noch bevor sie verdampfen können“, erklärt Tim Fellinger. „Die Spaltprodukte wiederum setzten sich dann vermutlich binnen weniger Nanosekunden zu größeren kohlenstoffreichen Molekülen zusammen.“ Die umgebende Zinkchlorid-Schmelze scheine diese zu stabilisieren. Weil es sich bei geschmolzenen Salzen um heiße ionische Flüssigkeiten handelt, nennen Chemiker Synthesen in solch einem Milieu auch Ionothermalsynthesen. In der Anorganik haben sich diese bereits bewährt. Die Potsdamer Max-Planck-Forscher waren die Ersten, die sie nun auch als Karbonisierungsvariante nutzten.

Nach der Reaktion gaben sie einfach verdünnte Salzsäure in ihr erkaltetes Gemisch. Während sich das Salz darin löste, blieb die Nanokohle als schwarzes, luftiges Pulver zurück und ließ sich einfach herausfiltern. Rasterelektronenmikroskopische Untersuchungen zeigten die unterschiedlichen Nanostrukturen der jeweiligen Produkte. So führten Acetonitril, Benzonitril und Dimethylsulfoxid zu sphärischen Strukturen, wie sie auch von bereits gängigen Industrierußen bekannt sind. Tropften die Wissenschaftler aber zum Beispiel Ethylenglykol oder Glycerin in ihre Salzschmelze, so entstanden schichtartige Kohlen. Für andere Flüssigkeiten wie Ethanol, Aceton oder Pyridin ergaben sich faserige Produkte, die zudem noch verzweigt und vernetzt waren. Kugelförmige Kohlenstoffpartikel wiesen dabei einen Durchmesser von zehn Nanometern auf, die faserartigen Strukturen waren bis zu 120 Nanometer lang.

Salzschmelzen wirken wie Schmier- und Spülmittel

Obwohl die genauen Mechanismen noch Spekulation seien, findet Tim Fellinger die neue Vielfalt an Partikelstrukturen recht plausibel: „Wir vermuten, dass die Salzschmelze als eine Art Schmiermittel fungiert und so die Mobilität der organischen Fragmente erhöht.“ Diese Beweglichkeit wiederum führe zu mehr Möglichkeiten für die Bausteine, sich zu arrangieren. Wie rasch dies geschehe, könne sich von Lösungsmittel zu Lösungsmittel unterscheiden – und damit ein Grund für die unterschiedlichen Strukturen sein. Und noch etwas hält der Chemiker und Nanostrukturwissenschaftler für wichtig: „Das Salz setzt die Grenzflächenspannung herab.“ Daher würden sich die Kohlefragmente nicht mehr unbedingt zu kugelförmigen Gebilden zusammenziehen, um so ihre Oberfläche zu minimieren. Genauso, wie Wasser auf Oberflächen keine Tropfen mehr bildet, wenn man ihm Spülmittel zusetzt.

Auch die große Porosität führten die Forscher auf die Anwesenheit der Salzionen zurück: Aufgrund der geringen Grenzflächenspannung hätten Salz und Kohle während der Synthese große Kontaktflächen. „Trennt man das Salz anschließend ab, bleiben viele Hohlräume zurück“, so Fellinger.

Mit vielen Ideen befinden sich die Forscher erst am Anfang. Bedenkt man zudem die große Anzahl anorganischer Salze und organischer Lösungsmittel, die sich bei dem Ansatz kombinieren lassen, sind noch viele maßgeschneiderte Kompositvarianten mit nützlichen Anwendungen vorstellbar. Einige der Kombinationen von Salz und Lösungsmitteln wollen die Forscher nun ausprobieren. Außerdem möchten sie genauer untersuchen, ob die Kohlenstoffschichten und -fasern, die jetzt zugänglich sind, für bestimmte Verwendungen Vorteile gegenüber sphärischen Strukturen bringen. „Auf jeden Fall haben wir mit der Heißinjektion gut verfügbarer Lösungsmittel und der Ionothermalsynthese ein neues, vielseitiges Instrument für die Karbonisierung“, sagt Tim Fellinger.


Ansprechpartner

Dr. Tim Fellinger
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Telefon: +49 331 567-9508

E-Mail: tim.fellinger@mpikg.mpg.de


Originalpublikation
Yuanqin Chang, Markus Antonietti und Tim-Patrick Fellinger

Synthesis of Nanostructured Carbon through Ionothermal Carbonization of Common Organic Solvents and Solutions

Angewandte Chemie, online veröffentlicht 4. März 2015

Dr. Tim Fellinger | Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam-Golm
Weitere Informationen:
http://www.mpg.de/9152078/kohlenstoff-nanostrukturen

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IFAM erweitert den Forschungsbereich »Beschichtungen für Bewuchs- und Korrosionsschutz«
11.01.2017 | Fraunhofer IFAM

nachricht Schrauben mit Köpfchen
10.01.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie