Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Koaxialkabel verbessern Lithium-Ionen-Akkus

11.02.2009
Materialkombination verspricht hohe Kapazität und Lebensdauer

Forscher an der texanischen Rice University haben einen neuartigen Zugang entwickelt, um Lithium-Ionen-Akkus leistungsfähiger zu machen. Sie setzen auf Kohlenstoff-Nanoröhren und ein Metalloxid, die zu einer Art nanoskaligen Koaxialkabeln kombiniert werden.

Sie kommen als Elektrodenmaterial im Akku zum Einsatz. Das verspricht eine höhere Kapazität als bei derzeit handelsüblichen Modellen und auch eine höhere Lebensdauer. "Was wir hier zeigen, ist insofern einzigartig, da nicht nur die Komponenten der Elektrode wichtig sind, sondern auch die Art, wie sie verarbeitet werden", mein Pulickel Ajayan, Professor für Maschinentechnik und Materialwissenschaften an der Rice University, gegenüber pressetext. Er sieht in der Arbeit ein interessantes Beispiel für Ingenieurskunst auf Nanoskalen.

Die Rice-Wissenschaftler haben Kohlenstoff-Nanoröhren mit einem Mantel aus Manganoxid praktisch als Nano-Koaxialkabel verarbeitet. "Dicht gepackte, geeignet ausgerichtete Bündel diese nanometerdicken Koaxialkabel sind ein vielversprechendes Anodenmaterial für Lithium-Ionen-Batterien", betont Ajayan. Denn für die Performance der Akkus ist wichtig, wie viel Lithium die Anode beim Laden aufnehmen kann und wie gut sie Strom leitet. "Die Nanoröhre ist hoch leitfähig und kann auch Lithium aufnehmen, während das Manganoxid eine sehr hohe Kapazität hat, aber schlecht leitet", sagt Rice-Forscher Arava Leela Mohana Reddy. Erst in der Koaxial-Kombination offenbart sich das volle Potenzial der Materialien. Die Performance der Hybridelektrode sei um fast einen Faktor zehn besser als bei Elektroden aus ihren Komponenten, so Ajayan. Im Vergleich zu gängigen kommerziellen Akkus wiederum sei eine zwei bis drei Mal höhere Kapazität möglich.

Ein weiterer Bereich, in dem sich die Forscher durch die Nano-Koaxialkabel Vorteile erhoffen, ist die Anzahl an Ladezyklen, über die sie verwendbar bleiben. Denn es gibt bereits Ansätze, die noch höhere Kapazititätsgewinne für Lithium-Ionen-Batterien versprechen, beispielsweise mit Silizium-Nanodrähten (pressetext berichtete: http://pte.at/pte.mc?pte=071221014). "Diese sind allerdings intrinsisch nicht besonders gut in Sachen zyklischer Stabilität", meint Ajayan. Genau in diesem Bereich sei die eigene Entwicklung vielversprechend, was auch langlebige Akkus in Aussicht stellt. "Wir versuchen, die Strukturen so zu bearbeiten und zu verändern, dass wir die bestmögliche Performance erreichen", sagt Projektmitarbeiter Manikoth Shaijumon. Da praktisch beliebig Anordnungen der Nanoelemente möglich sind, halten die Forscher auch relativ dünne und einigermaßen biegsame Akkus für möglich. "Diese Technologie wäre geeignet, um flexible Elektroden auf größeren Skalen herzustellen. Man könnte eine flexible Matte aus solchen Koaxialkabeln nutzen", meint Ajayan. Auch solche Ideen verfolgen die Rice-Forscher nun in ihren Laboren.

Thomas Pichler | pressetext.austria
Weitere Informationen:
http://www.rice.edu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie