Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialversagen wird vorhersehbar

29.11.2012
Polymer-Komposite: Leuchtende Mikrostrukturen machen innere Schäden sichtbar

Materialermüdung rechtzeitig zu erkennen ist eine technisch schwierige Aufgabe, denn Risse oder Schwachstellen im Inneren eines Materialblocks können von außen kaum erkannt werden. Wären Materialschäden frühzeitig erkennbar, könnten jedoch desaströse Unfälle verhindert werden – wie zum Beispiel das ICE-Unglück in Eschede 1998, das durch einen Riss in einem Metallrad verursacht wurde.

Noch schwieriger ist es, Materialschäden in Kompositmaterialien festzustellen. Ein deutsches Forschungsteam hat nun gezeigt, dass die Stabilität von Kunststoffkompositen, denen eine bestimmte Form von Zinkoxid beigemischt ist, mithilfe von Lichteinstrahlung von außen bestimmt werden kann. Das neue Konzept könnte zahlreiche ingenieurtechnische Probleme lösen, da Kunststoffkomposite vom Fahrzeugbau bis hin zur Medizintechnik verbreitet sind und gezielt für Hochbelastungsanwendungen entwickelt werden. Die Wissenschaftlerinnen und Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU), der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der TU München (TUM) veröffentlichten ihre Ergebnisse nun online im Fachjournal Advanced Materials.

„Die Lumineszenz von mikrostrukturierten Zinkoxidtetrapoden ist eine etablierte aber äußerst interessante Eigenschaft, die sich unter mechanischer Belastung verändert. Uns wurde schnell klar, dass man damit innere Materialschäden sichtbar machen könnte“, sagt Dr. Yogendra Mishra von der Technischen Fakultät der CAU. Das Forschungsteam hatte Zinkoxidtetrapoden mit einem Silikonpolymer (Polydimethylsiloxane) vermischt und die Eigenschaften des so entstandenen Kompositmaterials untersucht. Sie fanden heraus, dass das Silikonmaterial durch die Zinkoxidkristalle nicht nur fester wird, sondern auch ein ungewöhnliches Lichtreflexionsverhalten aufweist. Bei Bestrahlung mit UV-Licht verändert sich unter mechanischer Belastung die Intensität des reflektierten Lichtes und damit seine Farbe. „Die Mikro-Nano-Kristalle geben eine Art optisches Warnsignal, wenn das Kompositmaterial durch Belastung zu versagen droht“, erläutert die Doktorandin Xin Jin. „Die Veränderung der Leuchteigenschaften von definierten Halbleiter-Mikrostrukturen durch mechanische Beanspruchung - wie wir es für die Zinkoxid-Tetrapoden erstmalig gezeigt haben - könnte auch für viele andere Leuchtstoffsysteme von Bedeutung sein. Wir erwarten weitere spannende Entwicklungen auf dem Gebiet der ‚self-reporting materials’“, ergänzt Professor Cordt Zollfranck von der TUM.

Kompositpolymere werden in zahlreichen Bereichen eingesetzt – von Zahnimplantaten bis hin zu Raumfahrzeugen. Sie bestehen aus zwei oder mehr Ausgangsmaterialien mit unterschiedlichen Eigenschaften – zum Beispiel Silikon und Zinkoxid – die im Materialverbund bessere Eigenschaften haben. Je nach Bedarf können sie besonders leicht, mechanisch robust und preiswert herstellbar designt werden. Professor Rainer Adelung, Leiter der Studie, betont: „Materialien wie die untersuchten Zinkoxidkristalle sind offenbar eine exzellente Komponente für zahlreiche spezielle Kompositmaterialien – auch in Konstruktionen, deren Versagen zu katastrophalen Unfällen führen kann."

Die Studie wurde unter anderem von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen der Sonderforschungsbereiche 677 und 855 gefördert.

Originalpublikation:
Xin Jin, Michael Götz, Sebastian Wille, Yogendra Kumar Mishra, Rainer Adelung, Cordt Zollfrank (2012): A novel concept for self-reporting materials: Stress sensitive photoluminescence in ZnO tetrapod filled elastomers, Advanced Materials, doi: adma.201203849

Folgende Fotos stehen zum Download bereit:

http://www.uni-kiel.de/download/pm/2012/2012-352-1.jpg
Bildunterschrift: Aufnahme der Zinkoxidtetrapoden mit dem Rasterelektronenmikroskop.
Copyright/Foto: Veröffentlicht mit freundlicher Genehmigung (DOI:10.1002/adma.201203849), Copyright 2012, Wiley.

http://www.uni-kiel.de/download/pm/2012/2012-352-2.jpg
Bildunterschrift: Aufbau des Experiments: Das Kompositmaterial wird gedehnt und gleichzeitig mit Licht bestrahlt. Mit einem Sensor wird dabei die reflektierende Farbe gemessen.
Copyright/Foto: Veröffentlicht mit freundlicher Genehmigung (DOI:10.1002/adma.201203849), Copyright 2012, Wiley.

http://www.uni-kiel.de/download/pm/2012/2012-352-3.jpg
Bildunterschrift: Wenn das Kompositmaterial mit UV-Licht bestrahlt und gleichzeitig gedehnt wird, verändert sich der Anteil des an den Zinkoxidkristallen reflektierten grünen Lichts mit der Intensität der Dehnung.
Copyright/Foto: Veröffentlicht mit freundlicher Genehmigung (DOI:10.1002/adma.201203849), Copyright 2012, Wiley.

Kontakt:
Prof. Dr. Rainer Adelung
Christian-Albrechts-Universität zu Kiel
Tel.: 0431/880-6116
E-Mail: ra@tf.uni-kiel.de

Prof. Dr. Cordt Zollfrank
Technische Universität München
Tel: 09421/187 450
E-mail: cordt.zollfrank@tum.de

Dr. Boris Pawlowski | idw
Weitere Informationen:
http://www.uni-kiel.de
http://www.uni-kiel.de/aktuell/pm/2012/2012-352-self-reporting-materials.shtml

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics