Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialien, die breiter werden, wenn man daran zieht

13.09.2011
Die Erfahrung lehrt, je stärker ein elastisches Gummiband in die Länge gezogen wird, desto schmaler wird es.

Wissenschaftler an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) beschäftigen sich mit Materialien, die ganz gegensätzlich reagieren: Sie werden beim Strecken breiter und beim Zusammendrücken schmaler.

Diese neuen – so genannten auxetischen – Materialien besitzen wertvolle mechanische Eigenschaften: Sie können viel Energie aufnehmen oder sind besonders bruchfest und lassen sich in der Praxis vielseitig einsetzen: beispielsweise in Stoß- und Schalldämpfern oder auch als Knochenersatzstoffe und Implantate in der Medizintechnik.

Die Erlanger Forscher aus den Bereichen Leichtbau und Modellierung des Exzellenzclusters Engineering of Advanced Materials haben diese ungewöhnlichen Strukturen entworfen und optimiert. Darüber berichten sie in zwei Aufsätzen der aktuellen Ausgabe der Zeitschrift Advanced Materials: „Design of Auxetic Structures via Mathematical Optimization” von J. Schwerdtfeger, F. Wein, G. Leugering, R. F. Singer, C. Körner, M. Stingl und F. Schury (DOI: 10.1002/adma.201004090) und „Finding Auxetic Frameworks in Periodic Tessellations“ von H. Mitschke, J. Schwerdtfeger, F. Schury, M. Stingl, C. Körner, R. F. Singer, V. Robins, K. Mecke and G. E. Schröder-Turk (DOI: 10.1002/adma.201100268).

Auxetische Materialien sind physikalisch durch eine negative Querkontraktionszahl charakterisiert, einer Größe aus der Mechanik bzw. Festigkeitslehre, die das Verhalten eines Körpers unter dem Einfluss einer Zugkraft bzw. Druckkraft beschreibt. Ihre komplexen Strukturen und Geometrien wurden in interdisziplinären Clusterprojekten, an denen Mathematiker, Physiker und Werkstoffwissenschaftler beteiligt sind, durch Modellierung und Simulation zunächst im Computer entwickelt und in einem zweiten Schritt dann mit einem Rapid-Manufacturing-Verfahren, dem selektiven Elektronenstrahlschmelzen, produziert. Dabei wird das Bauteil mit Hilfe eines Elektronenstrahls durch selektives Schmelzen schichtweise aus Metallpulver aufgebaut. Die so erzeugten Bauteile zeigen deutlich verbesserte mechanische Eigenschaften, ein Beleg für gute Übereinstimmung zwischen berechneten und gemessenen mechanischen Eigenschaften. Hier zeigt sich das große Potenzial der Zusammenarbeit von Naturwissenschaftlern und Ingenieuren in der Kombination aus physikalischer Modellierung, mathematischer Strukturoptimierung und präziser Fertigung.

Neben dem optimalen Design auxetischer zellularer Metalle spielt die Modellierung und Simulation auch in vielen anderen Bereichen im Erlanger Exzellenzcluster eine entscheidende Rolle, so etwa im Bereich der Computerchemie oder bei der Entwicklung optischer Metamaterialien auf der Nanoskala. Über ihre Forschungsarbeit berichten die Wissenschaftler in 20 Aufsätzen des Sonderbands „Hierarchical Structures Towards Functionality“ der Zeitschrift Advanced Materials, der ganz dem Exzellenzcluster Engineering of Advanced Materials gewidmet ist. (Online-Ausgabe unter http://onlinelibrary.wiley.com/doi/10.1002/adma.v23.22/23/issuetoc).

Für den Band haben mehr als 60 Wissenschaftler aus allen acht Disziplinen des Clusters mehr als ein Jahr geplant und geschrieben, bis das fast 200 Seiten umfassende Heft fertig gestellt war. Es enthält verschiedene Übersichtsartikel aus den Materialbereichen Nanoelektronik, Optik und Photonik, Katalyse und Leichtbau, die Aspekte der bisher im Exzellenzcluster geleisteten Forschung zusammenfassen sowie neun Artikel mit aktuellsten und erstmals publizierten Ergebnissen. „Wir sind sehr stolz, mit dieser Sonderausgabe in Advanced Materials, einer der international bedeutendsten materialwissenschaftlichen Fachzeitschriften, unseren aktuellen Forschungs- und Arbeitsstand international sichtbar und auf höchstem wissenschaftlichem Niveau darstellen zu können. Vor der anstehenden Begutachtung für eine zweite Förderperiode des Exzellenzclusters von 2012 bis 2017 ist dies ein wichtiger Beleg für die herausragende Leistungskraft und ein Alleinstellungsmerkmal des Clusters“, sagt Professor Dr. Wolfgang Peukert, Sprecher des Exzellenzclusters Engineering of Advanced Materials und einer der drei Gastherausgeber.

Weitere Informationen für die Medien:

Prof. Dr. Wolfgang Peukert
Tel. 09131/85-29400
w.peukert@lfg.uni-erlangen.de

Dr. Pascale Anja Dannenberg | idw
Weitere Informationen:
http://www.eam.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscher decken die grundsätzliche Limitierung im Schlüsselmaterial für Festkörperbeleuchtung auf
24.01.2018 | Forschungsverbund Berlin e.V.

nachricht Neue „Arbeitskluft“ für Polizei und Feuerwehr soll Einsätze und Umwelt schützen
23.01.2018 | Deutsche Bundesstiftung Umwelt (DBU)

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher decken die grundsätzliche Limitierung im Schlüsselmaterial für Festkörperbeleuchtung auf

Zum ersten Mal hat eine internationale Forschungsgruppe den Kernmechanismus aufgedeckt, der den Indium(In)-Einbau in Indium-Galliumnitrid ((In, Ga)N)-Dünnschichten begrenzt - dem Schlüsselmaterial für blaue Leuchtdioden (LED). Die Erhöhung des In-Gehalts in InGaN-Dünnschichten ist der übliche Ansatz, die Emission von III-Nitrid-basierten LEDs in Richtung des grünen und roten Bereiches des optischen Spektrums zu verschieben, welcher für die modernen RGB-LEDs notwendig ist. Die neuen Erkenntnisse beantworten die langjährige Forschungsfrage: Warum scheitert dieser klassische Ansatz, wenn wir versuchen, effiziente grüne und rote LEDs auf InGaN-Basis zu gewinnen?

Trotz der Fortschritte auf dem Gebiet der grünen LEDs und Laser gelang es den Forschern nicht, einen höheren Indium-Gehalt als 30% in den Dünnschichten zu...

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Enzym mit überraschender Doppelfunktion

24.01.2018 | Biowissenschaften Chemie

Neuartiger hoch-produktiver Prozess für robuste Schichten auf flexiblen Materialien

24.01.2018 | Messenachrichten

Neuartiger Sensor zum Messen der elektrischen Feldstärke

24.01.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics