Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnesium für die Nasennebenhöhle

17.12.2010
Institut für Werkstoffkunde der Leibniz Universität Hannover entwickelt resorbierbare Gefäßstütze innerhalb des Sonderforschungsbereichs 599 „Biomedizintechnik“

Manchmal ist es nur ein kleiner Schritt von der Medizin zur Werkstoffkunde: Jan-Marten Seitz, Maschinenbau-Ingenieur im Institut für Werkstoffkunde der Leibniz Universität Hannover, hat ein Verfahren zur Herstellung von im Körper resorbierbaren Stents – Gefäßstützen - entwickelt.

Seit drei Jahren beschäftigt sich der 28-Jährige mit diesen Stents, die speziell für die HNO-Chirurgie geschaffen worden sind, um in Hohlorgane wie etwa Nasennebenhöhlen eingesetzt zu werden. Das Besondere daran: Nach etwa fünf bis sechs Wochen baut sich der Stent selbst ab. Derzeit werden nicht resorbierbare Stents beispielsweise aus Silikon für Operationen der Nasennebenhöhlen verwendet.

Diese verbleiben entweder im Körper, was zu Unannehmlichkeiten beim Patienten führen kann, oder müssen anschließend wieder entfernt werden. Dadurch kann es zur Trauma- und Narbenbildung kommen.

Das Forschungsvorhaben erfolgt innerhalb des interdisziplinären Sonderforschungsbereichs 599 "Biomedizintechnik": Seit acht Jahren kooperieren darin auch drei hannoversche Hochschulen: die Leibniz Universität, die Medizinische Hochschule sowie die Stiftung Tierärztliche Hochschule.

Mittlerweile haben die Forscher den Stent aus der speziellen Magnesium-Legierung patentieren lassen. Bis er auch am Menschen Anwendung findet, kann es allerdings noch einige Jahre dauern. "Hierbei handelt es sich um ein Medizinprodukt, das streng geregelte Testverfahren innerhalb mehrerer Studien durchlaufen muss, das ist ein langwieriger Prozess", sagt Prof. Dr.-Ing. Friedrich-Wilhelm Bach, Leiter des Instituts für Werkstoffkunde. Dennoch schauen alle Beteiligten optimistisch in die Zukunft, denn die Forschung geht weiter: Der SFB 599 "Biomedizintechnik" wurde gerade von der Deutschen Forschungsgemeinschaft (DFG) um vier Jahre verlängert.

Jessica Lumme | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics