Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtschalter auf DVD

28.07.2015

Da sich die elektronischen Eigenschaften eines optischen Speichermaterials schneller ändern als seine Struktur, könnte es neue Anwendungen finden

In DVDs steckt möglicherweise mehr als bisher angenommen. Das Material aus Germanium, Antimon und Tellur, in dem die Datenträger Information speichern, könnte sich nämlich auch als extrem schneller Lichtschalter für die optische Kommunikation oder Datenverarbeitung eignen.


Ordnung versus Unordnung: Elektronen werden in der kristallinen Struktur einer Verbindung aus Germanium, Antimon und Tellur (GST) anders gebeugt als in der amorphen. Das Beugungsbild des Kristalls (links) lässt sich daher von demjenigen des amorphen Materials (rechts) gut unterscheiden.

© Fritz-Haber-Institut der MPG


Kristallin und transparent: Kristallines GST reflektiert sichtbares Licht. Wenn es von einem Blitz infraroten Lichts getroffen wird, verändern sich die optischen Eigenschaften in weniger als 100 Femtosekunden – eine Femtosekunde entspricht dem Millionstel Bruchteil einer Milliardstel Sekunde. Dann reflektiert das Material 10 Prozent weniger Licht, seine Transparenz erhöht sich aber um 40 Prozent. Wie die Bilder der Elektronenbeugung (graue Ringe) zeigen, bleibt die kristalline Struktur dabei erhalten. Das Kristallgitter braucht gut fünf Pikosekunden, bis es sich soweit aufgeheizt hat, dass es schmilzt. In diesem amorphen Zustand lässt das Material 70 Prozent eines Lichtstrahls passieren. Wenn man die Energie des infraroten Laserblitzes extrahieren könnte, ehe der Kristall geschmolzen ist, ließen sich die optischen Eigenschaften ändern, ohne dass das Material eine andere Struktur annimmt.

© Nature Materials 2015

Das hat ein internationales Team um Forscher des Berliner Fritz-Haber-Instituts der Max-Planck-Gesellschaft und vom ICFO-Institut de Ciències Fotòniques in Barcelona herausgefunden. Der Speichermechanismus in DVDs beruht darauf, dass Laserpulse die Struktur des Materials neu arrangieren und es dabei von einem transparenten in einen intransparenten Zustand schalten.

Wie die Wissenschaftler jetzt herausgefunden haben, ändern sich die optischen Eigenschaften allerdings viel schneller als die Struktur. Das könnte sich ausnutzen lassen, um neuartige photonische Bauteile zu konzipieren.

DVDs dürften bald zum Auslaufmodell werden, ihr Speichermaterial aber möglicherweise nicht. Die Datenträger, die sich vor allem als Medien für Filme einen Namen gemacht haben, werden nämlich zunehmend von anderen Speichertechniken abgelöst. Die Verbindung Ge2Sb2Te5, von Fachleuten kurz GST genannt, könnte allerdings neue Aufgaben finden.

Seinen Job in wiederbeschreibbaren DVDs verdankt das Material der Tatsache, dass Laserblitze es sehr schnell von einer stark reflektierenden kristallinen Form in eine weniger gut reflektierende ungeordnete Variante umwandeln. Die beiden Zustände codieren dann die Nullen und Einsen digitaler Information.

„Wir zeigen mit unserer Arbeit, dass sich das Material auch für andere Anwendungen ausnutzen lässt als für die Datenspeicherung“, sagt Ralph Ernstorfer, Leiter einer Forschungsgruppe am Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin. „GST könnte sich etwa für Modulatoren in der optischen Kommunikation oder für Bauelemente in einer optischen Computertechnik eignen.“

Die neuen Funktionen stehen dem Material offen, weil das Team um Ralph Ernstorfer und Simon Wall, Wissenschaftler am ICFO-Institut de Ciències Fotòniques, eine bislang unbekannte Eigenschaft an ihm entdeckten. Es ändert seine optischen Eigenschaften wie Transparenz, Reflektivität und Absorptionsfähigkeit nämlich instantan, während die Struktur erst verzögert auf die Anregung reagiert. Für die Wissenschaftler war das ziemlich überraschend. „Bislang dachte man, das optische Verhalten wechselten so schnell, weil sich die Struktur ändere“, sagt Ralph Ernstorfer.

Vagabundierende Bindungselektronen wechseln den Zustand

Weil der Strukturwandel so schnell vonstattengehen müsste, verglichen ihn manche Wissenschaftler mit dem Umklappen eines Regenschirmes, und zwar von der regelmäßigen kristallinen zu der unregelmäßigen amorphen Anordnung. Zwar wechselt die Struktur von GST tatsächlich zwischen diesen zwei Formen, aber nicht so plötzlich, wie ein Sturm einen Regenschirm umstülpt – um im Bild zu bleiben. Denn wie die Max-Planck-Forscher rausfanden, ändert sich zunächst nur die elektronische Struktur des Materials, die für die optischen Eigenschaften wie Transmission, Reflektivität und Absorptionsfähigkeit entscheidend ist.

Um zu verstehen, was dabei genau geschieht, hilft ein Blick auf die Anordnung der Elektronen in kristallinem GST. Darin verbinden nämlich nicht Elektronenpaare die einzelnen Atome miteinander, sondern einzelne Elektronen. Diese sind allerdings nicht auf die Bindung zwischen jeweils zwei Atomen fixiert, die elektronischen Einzelgänger wechseln ihre Zuständigkeit vielmehr ständig: Sie sind delokalisiert, wie Physiker sagen.

Die vagabundierenden Bindungselektronen lassen sich allerdings recht leicht in andere nicht bindend wirkenden Zustände befördern. Genau das tun die Forscher mit einem kurzen intensiven Laserpuls, mit der unmittelbaren Folge, dass das Material Licht nicht mehr so gut absorbiert, sondern zu einem gewissen Teil ungehindert passieren lässt – es wird transparent.

Die Veränderung der elektronischen und mithin der optischen Eigenschaften, beobachteten die Physiker, indem sie nach dem ersten Laserblitz einen zweiten ebenfalls sehr kurzen Puls auf eine dünne Probe von GST feuerten. Da sie dabei den Abstand zwischen den beiden Lichtblitzen variierten, konnten sie gewissermaßen in einem Film festhalten, dass sich das Elektronengefüge sofort neu sortiert.

Die optischen Eigenschaften ändern sich unabhängig von der Struktur

„Doch nur weil wir diese Methode mit einer zweiten kombiniert haben, konnten wir die Änderungen der optischen Eigenschaften und der Struktur unterscheiden“, sagt Lutz Waldecker, der im Rahmen seiner Doktorarbeit maßgeblich an den Experimenten beteiligt war. Den Strukturwandel verfolgten er und seine Kollegen mit kurzen Elektronensalven, die durch einen Kristall anders sausen als durch unregelmäßig strukturierte Materialen.

Da die Forscher die Elektronen dem anregenden Laserblitz auch mit unterschiedlicher Verzögerung hinterherschickten, beobachteten sie, dass das regelmäßige Arrangement der Atome länger erhalten bleibt als die elektronische Struktur. Demnach schmilzt der Kristall erst gut fünf Pikosekunden – das sind einige millionstel Bruchteile einer millionstel Sekunde – nach dem Lichtblitz, der die ganze Neuordnung in Gang setzt. Dabei verliert die Struktur ihre regelmäßige Ordnung.

Fünf Pikosekunden klingt wenig, reicht aber, um das Material für andere Einsätze als die Datenspeicherung zu qualifizieren. Da es bei der Neuausrichtung der Atome gewissermaßen zu Spannungen und auf Dauer zu Brüchen in dem Material kommt, lässt sich das atomare Gefüge einer Substanz nämlich nicht beliebig oft umbauen. Für einen schnellen Schalter im optischen Datenstrom gehört aber genau das zum Anforderungsprofil. „Wenn es gelänge die Energie, die für die Strukturänderung erforderlich ist, schnell abzuführen, ließe sich die kristalline Struktur erhalten“, sagt Lutz Waldecker.

Rasch abfließen könnte die Energie, wenn eine GST-Schicht zwischen zwei dünnen Graphit-Schichten oder gar zwischen zwei Graphenlagen eingeschlossen würde. Die Blätter vernetzter Kohlenstoffatome, aus denen Graphen besteht, bringen dafür die entsprechenden Voraussetzungen mit. Genau mit solchen Sandwiches verschiedener Materialien, werden die Physiker um Ralph Ernstorfer nun weiter experimentieren. „Wir wollen untersuchen, in welche Zustände die Elektronen bei der Anregung gelangen und wie die Energie in Sandwich-Strukturen abließen kann“, sagt Ralph Ernstorfer. Auf diese wollen er und seine Kollegen GST auch als Lichtschalter für die optische Datenverarbeitung in Position zu bringen.


Ansprechpartner

Dr. Ralph Ernstorfer
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Telefon: +49 30 8413-5117

E-Mail: ernstorfer@fhi-berlin.mpg.de

 
Lutz Waldecker
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Telefon: +49 30 8413-5133

E-Mail: waldecker@fhi-berlin.mpg.de


Originalpublikation
Lutz Waldecker, Timothy A. Miller, Miquel Rudé, Roman Bertoni, Johann Osmond, Valerio Pruneri, Robert E. Simpson, Ralph Ernstorfer und Simon Wall

Time-domain separation of optical properties from structural transitions in resonantly bonded materials

Nature Materials, 27. Juli 2015; DOI: 10.1038/NMAT435

Dr. Ralph Ernstorfer | Max-Planck-Gesellschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften