Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosteneffiziente Produktion von Leichtbau-Komponenten dank Lasertechnik

08.03.2012
»Faserverbundkunststoffe« - diese Werkstoffklasse ist heutzutage in aller Munde, wenn es um Leichtbau geht.
Für die Mobilität bedeuten Leichtbauteile geringeren Kraftstoffverbrauch und höhere Reichweite. Doch noch ist die Marktdurchdringung mit komplexen Leichtbauteilen gering und die Fertigungskosten sind hoch. Das Fraunhofer-Institut für Lasertechnik ILT entwickelt nun gemeinsam mit Partnern aus Industrie und Forschung wirtschaftliche Fertigungsverfahren, welche die Nutzbarkeit von Leichtbauteilen im Massenmarkt deutlich steigern.

Die Nachfrage nach Leichtbau-Komponenten ist in den letzten Jahren weltweit stark gestiegen. Klassische Leichtbaumaterialien sind neben Aluminium, hochfesten Stählen, Magnesium und Titan vor allem faserverstärkte Kunststoffe (FVK). Diese bestehen aus einer organischen Matrix, die entweder mit Kohlenstofffasern (CFK) oder mit Glasfasern (GFK) verstärkt ist. Derzeit ist die Herstellung dieser Bauteile mit langen Zykluszeiten und einem geringen Automatisierungsgrad verbunden, was dem Einsatz von FVK im Massenmarkt im Wege steht. Das EU-Projekt »FibreChain« und das BMBF-geförderte Projekt »InProLight« haben es sich daher zum Ziel gesetzt, unterschiedliche integrative Prozessketten von anspruchsvollen Speziallösungen bis hin zur großserientauglichen Produktion thermoplastischer FVK-Bauteile zu entwickeln. Das Fraunhofer ILT übernimmt hierbei insbesondere die Aufgabe, das Fügen und Schneiden der Bauteile zu optimieren.

Strukturelles Fügen durch Laserstrahlschweißen

Ausgehend vom Rohmaterial entwickeln Andreas Rösner und seine Kollegen ein Verfahren zum strukturellen Fügen der Leichtbaukomponenten. Bislang wurden diese konventionell durch Kleben oder Nieten verbunden. Beide Verfahren benötigen eine Reihe von Vorverarbeitungsschritten, sind teuer und mit langen Prozesszeiten verbunden. Um diese Nachteile zu umgehen, verbindet Rösner die Komponenten mit dem Laser, einem Verfahren, bei dem die Energie direkt in die Fügezone eingebracht wird und das mit einem Minimum an Bearbeitungszeit einhergeht. Mit diesem Verfahren lassen sich sowohl komplexe Bauteile aus Einzelteilen herstellen als auch lastangepasste Strukturen durch selektive Versteifungen erzeugen. Eine Erweiterung stellt hierbei auch das Fügen von Kunststoff mit Metall dar, das in einem speziellen zweistufigen Verfahren mit Laserstrahlung realisiert werden konnte. Rösner strukturiert das metallische Bauteil mittels Laserstrahlung und erwärmt in einem zweiten Schritt dieses Bauteil durch Bestrahlung mit einem Diodenlaser. Der über Wärmeleitung erweichte Kunststoff dringt dann in diese Strukturen ein und stellt eine sehr gute mechanische Verkrallung zwischen den beiden Fügepartnern her.
Schneiden ohne Kantenschädigung

Neben dem Fügen von FVK-Bauteilen und der Herstellung von Kunststoff-Metall-Verbindungen ist das Schneiden ein Bearbeitungsschritt, der an vielen Stellen der Prozesskette anfällt. So müssen Vormaterial zugeschnitten und Bauteile besäumt sowie mit Löchern und Abschnitten versehen werden. Hier kommt es darauf an, die Kantenschädigung des Materials auf ein Minimum zu reduzieren. Bisherige Laserschneidtechniken erzielen aufgrund einer zu großen Wärmeeinflusszone allerdings ein unsauberes Bearbeitungsergebnis. Frank Schneider und seine Kollegen entwickeln daher neue Schneidverfahren unter anderem mit einem innovativen Kurzpuls-C02-Laser. Die thermische Schädigung des Materials kann durch den geringen Wärmeeintrag erheblich reduziert werden. Eine nahezu vollständige Eliminierung thermischer Schäden erhalten die Aachener Forscher beim Einsatz von Hochleistungs-Ultrakurzpulslasern. Bei Leistungen bis 500 W können mit diesen Lasern wirtschaftliche Prozessschritte auch an hochempfindlichen Werkstoffkombinationen der Luft- und Raumfahrt umgesetzt werden.

Vielfältige Einsatzmöglichkeiten von FKV-Bauteilen

Durch die eingesetzten Laserschweiß- und schneidverfahren soll die Herstellung von FVK-Bauteilen deutlich vereinfacht werden, automatisierbar und vor allem schnell und kosteneffizient sein. Am Beispiel einer Autositzlehne der Firma Weber haben die Wissenschaftler diese Verfahren bereits erfolgreich demonstriert.
Leichtbauteile kommen überall dort zum Einsatz, wo ein verringertes Gewicht für eine Senkung der Betriebskosten sorgt: im Fahrzeug-, Flug- und Schiffbau sowie in der Raumfahrt. Auch für hochdynamische Maschinen und im Hochbau sind kostengünstige und flexible Leichtbauweisen als Alternative zum Bau mit Standard-Bauteilen gefragt.

Unsere Experten präsentieren auf der JEC Europe, der Fachmesse für Verbundwerkstoffe, vom 27. - 29. März 2012 in Paris, FVK-Bauteile, die mit den entwickelten Verfahren bearbeitet wurden. Dazu zählen eine Autositzlehne, Front-End-Komponenten sowie weitere Exponate lasertechnischer Leichtbauanwendungen.

Laser-Leichtbauzentrum am Fraunhofer ILT

Am Fraunhofer ILT wird das Thema Leichtbau konsequent vorangetrieben: Im Laseranlagenpark des Instituts entsteht ein Leichtbauzentrum, das im Rahmen der Veranstaltung »Lasertechnik Live« des International Laser Technology Congress AKL’12 am 11. Mai 2012 vorgestellt wird. An einem Standort entstehen unter anderem eine Portalanlage zur fasergekoppelten Bearbeitung von 3D-Blech und FVK-Bauteilen sowie eine 2D-Anlage mit Beschleunigungskennwerten bis zu 5g. Zudem erweitert das Fraunhofer ILT sein Leichtbauzentrum um eine weitere 3D- fähige Anlage mit einem C02-Laser zur Bearbeitung von FVK-Bauteilen. Ergänzt wird das Zentrum durch Hochleistungs-Ultrakurzpulslaser, mit denen vor allem bei CFK-Bauteilen bisher unerreichte Abtrags- und Schnittqualitäten erzielt werden können.

Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:

Dipl.-Ing. Andreas Rösner
Kunststoffschneiden und -schweißen
Telefon +49 241 8906-158
andreas.roesner@ilt.fraunhofer.de

Dr.-Ing. Frank Schneider
Laserschneiden
Telefon +49 241 8906-426
frank.schneider@ilt.fraunhofer.de

Dr.-Ing. Alexander Olowinsky
Leiter der Gruppe Mikrofügen
Telefon +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de

Dr. rer. nat. Dirk Petring
Leiter der Gruppe Makrofügen und -schneiden
Telefon +49 241 8906-210
dirk.petring@ilt.fraunhofer.de

Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten