Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoff-Riesenmoleküle für neue Technologien

29.01.2013
In einem Verbundprojekt entwickeln Forscher zukunftsweisende Materialien aus Kunststoffen und dem Kohlenstoff Graphen

Eine besondere Form von Kohlenstoff als Hoffnungsträger für neue Technologien: Forscherinnen und Forscher haben im Projekt „FUNgraphen“ neue Kohlenstoff-Riesenmoleküle und molekulare Kohlenstoff-Verbundstoffe mit besonderen Eigenschaften entwickelt. Bei den Molekülen handelt es sich um Graphen, das aus einzelnen Lagen von wabenartig angeordneten Kohlenstoffatomen besteht.


Graphit besteht aus zahlreichen Lagen des Kohlenstoffs Graphen (links oben). Die in Freiburg entwickelten Graphen-Riesenmoleküle sind weniger als ein millionstel Millimeter dick, aber großflächig und erreichen Weiten von mehr als einem hundertstel Millimeter (rechts). Sie können mit Kunststoffen verknüpft werden, um diesen neue Eigenschaften zu verleihen (links unten).

Quelle: FMF/Uni Freiburg

Dieser Werkstoff war bisher nur in aufwendigen Verfahren mit hohen Kosten verfügbar und deshalb für Kunststoffanwendungen wenig geeignet. Die Gruppe am Freiburger Materialforschungszentrum (FMF) der Albert-Ludwigs-Universität um den Chemiker Prof. Dr. Rolf Mülhaupt, geschäftsführender Direktor des FMF, ist es gelungen, Graphen mit Kunststoffmolekülen zu verbinden, für Kunststoff-Anwendungen maßzuschneidern und im Kilogrammmaßstab für die Materialoptimierung bereitzustellen. Das FMF koordiniert das Projekt „FUNgraphen“, das vom Bundesministerium für Bildung und Forschung gefördert, vom Projektträger Jülich betreut und von einem Industriebeirat begleitet wird.

Beteiligt sind neben dem FMF die Universität Bayreuth, die Berliner Bundesanstalt für Materialforschung und -prüfung (BAM) und das Freiburger Fraunhofer-Institut für Werkstoffmechanik.

Die neuen Verfahren ermöglichen es, einzelne Kohlenstoffatomlagen mit wabenartiger Anordnung der Kohlenstoffatome aus natürlichem Graphit abzulösen. Es entstehen Kohlenstoff-Riesenmoleküle, so genannte Makromoleküle. Sie sind weniger als ein millionstel Millimeter dick, aber großflächig und erreichen Weiten von mehr als einem hundertstel Millimeter. Die Forscher können die Kohlenstoffmoleküle direkt mit den Molekülen von Kunststoffen chemisch und physikalisch verknüpfen. So entstehen molekulare Kohlenstoff-Verbundstoffe, die leicht, fest, bioverträglich, und elektrisch leitfähig sind. Zudem sind sie beständig gegen Hitze, Chemikalien und Strahlung sowie gas- und flüssigkeitsundurchlässig. „Sie können dazu beitragen, die Ressourcen- und Energieeffizienz von Kunststoffen erheblich zu steigern“, sagt Mülhaupt.

Darüber hinaus haben die Forscher ohne Zusatz von Bindemitteln einzelne dieser großflächigen Kohlenstoffmoleküle in Wasser, ungiftigen Lösemitteln und Kunststoffen fein verteilt und konzentrierte stabile Dispersionen hergestellt. Mit diesen Stoffgemengen können sie Oberflächen beschichten und leitfähige Kohlenstofffolien sowie Leiterbahnen drucken. Auf diese Weise kann Kohlenstoff teure Übergangsmetalle wie Palladium oder Indium ersetzen. „Anwendungen reichen von der druckbaren Elektronik bis hin zu gedruckten Katalysatoren mit Porendesign für die Herstellung von Feinchemikalien mit einfacher Katalysatorrückgewinnung“, sagt Mülhaupt. Im Vergleich zu Indiumzinnoxid-Schichten sind die leitfähigen Kohlenstoffschichten mechanisch erheblich robuster. Den Wissenschaftlerinnen und Wissenschaftlern am FMF gelang es außerdem, mit Kohlenstoff-Makromolekülen Kunststoffe und Gummi zu verstärken und sie gleichzeitig elektrisch leitfähig, strahlungsbeständig und gasdichter zu machen. Diese Stoffe sind für Anwendungen bei Benzintanks und Kraftstoffleitungen, bei Gehäusen, die gegen elektromagnetische Strahlung abgeschirmt sind, sowie bei Leichtlauf-Autoreifen für reduzierten Kraftstoffverbrauch von Interesse.

Beispiele aus der Forschungsarbeit der Projektpartner zeigen ebenfalls: Kohlenstoff-Makromoleküle sind vielseitige Bausteine, die im Vergleich zu den bisher üblichen Kohlenstoff-Nanopartikeln neue Potenziale eröffnen, um nachhaltige Materialien und Technologien zu entwickeln. Im „FUNgraphen“-Team an der Universität Bayreuth hat Prof. Dr. Volker Altstädt die Zellgrößen von Schäumen durch die Zugabe von Kohlenstoff-Makromolekülen erheblich verkleinert. Auf dieser Basis können die Forscher die Wärmedämmwirkung von Schaumstoffen steigern und neue, hocheffiziente Dämmstoffe entwickeln. Der „FUNgraphen“-Gruppe um Dr. Bernhard Schartel an der BAM ist es gelungen, die Brandschutzwirkung halogenfreier Flammschutzmittel zu steigern, indem er sie mit geringen Zusätzen der neuen Kohlenstoff-Makromoleküle versehen hat. Ein Kunststoff, der mit diesem neuen Mittel ausgerüstet ist, entzündet sich auch nach mehrfachem Beflammen nicht – im Unterschied zu ungeschützten Kunststoffen, die sich bei hohen Temperaturen verformen lassen und sofort zu brennen beginnen, wenn sie mit Feuer in Kontakt kommen.

Weitere Informationen:
http://portal.uni-freiburg.de/fungraphen

Originalveröffentlichung:
F. J. Toelle, M. Fabritius, R. Mülhaupt, Advanced Functional Materials (2012), 22(6), 1136-1144. Emulsifier-Free Graphene Dispersions with High Graphene Content for Printed Electronics and Freestanding Graphene Films.

Kontakt:
Prof. Dr. Rolf Mülhaupt
Freiburger Materialforschungszentrum (FMF)
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-6270
E-Mail: rolf.muelhaupt@makro.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Weitere Informationen:
http://www.uni-freiburg.de
http://portal.uni-freiburg.de/fungraphen

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten