Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Tropfen wachsen anders

20.08.2012
Wenn sich Feuchtigkeit auf einer Oberfläche niederschlägt und Tropfen entstehen, kommt es zu Beginn dieses Prozesses zu einem unerwarteten Wachstumsschub.

Dass feine Tautröpfchen Spinnennetze, Grashalme oder gar Insekten in atemberaubende Schönheiten verwandeln können, ist unumstritten. Und bei genauem Betrachten bilden selbst die Tropfen, die beispielsweise beim Abkühlen einer Suppe die Unterseite von Frischhaltefolie oder Topfdeckeln überziehen, erstaunlich regelmäßige und ästhetische Muster.


Wenige große und viele kleine Tautropfen verwandeln diese Schnepfenfliege in eine funkelnde Schönheit. Ein genauer Blick würde offenbaren, dass es weniger kleine Tropfen gibt als die bislang gültige Theorie erwarten ließ.
© Wikimedia Commons

Welchen Gesetzen Entstehung und Wachstum solcher Tropfen gehorchen, haben Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation in Göttingen jetzt erstmals umfassend untersucht. Ihre aufwendigen Computersimulationen und Experimente zeigen, dass vor allem der Beginn dieser Wachstumsphase anders verläuft, als bisher gedacht: Die kleinsten Tropfen wachsen im Verhältnis merklich schneller als ihre größeren Brüder. Die neuen Ergebnisse sind besonders für Bewässerungs- und Kältetechniken von Bedeutung.

Schlägt sich Feuchtigkeit auf einer kühleren Oberfläche nieder, geschieht dies Schritt für Schritt: Einzelne Wassermoleküle vereinigen sich zunächst zu winzigen Tröpfchen von nur wenigen Mikrometern. Während diese weiter an Größe zunehmen, wachsen in den Zwischenräumen ununterbrochen kleinere Exemplare nach, die sich mit der Zeit mit ihren größeren Brüdern vereinigen können. Bisher gingen Forscher davon aus, dass die Verteilung der Tröpfchengröße einem festen Gesetz folgt – unabhängig davon, ob es sich um die frühe, mittlere oder späte Wachstumsphase handelt: Während kleine Tröpfchen häufig vorkommen, treten solche mit zunehmender Größe immer seltener auf. Solche so genannte Potenzgesetze beschreiben zahlreiche Verteilungen in Natur und Technik, etwa die der Größe von Mondkratern, die Häufigkeitsverteilung von Elementen in der Erdkruste und von Wörtern in Texten.

Die jüngsten Ergebnisse der Göttinger Wissenschaftler zeigen jedoch, dass ein und dasselbe Gesetz nicht die gesamte Wachstumsphase der Tröpfchen treffend beschreibt. Besonders zu Beginn des Wachstums – also sozusagen in der frühen Kindheit der Tröpfchen – folgt ihr Verhalten nicht den Vorgaben der Skalentheorie. „Zwar gibt es nach wie vor viel mehr kleine Tropfen als große. Doch man beobachtet deutlich weniger kleine Tröpfchen als erwartet“, beschreibt Jürgen Vollmer, Wissenschaftler am Max-Planck-Institut für Dynamik und Selbstorganisation, der die Studie leitete, die Ergebnisse. Das erklären die Forscher damit, dass die kleinen Tropfen ihrer Kindheit schneller entwachsen, als die Skalentheorie vermuten lässt. In ihrer letzten Wachstumsperiode wachsen die Tröpfchen dagegen deutlich langsamer als bislang angenommen.
Um diese Abweichungen festzustellen, muss man ganz genau hinsehen. Mit ihrem Team betreiben Jürgen Vollmer und Björn Hof, der ebenfalls am Göttinger Max-Planck-Institut forscht, die Kunst des „Tropfenzählens“ auf zweierlei Art: im Experiment und in der Simulation am Computer. „Der grundsätzliche Aufbau des Experiments erinnert an einen Topf mit kochendem Wasser und einen Deckel“, sagt Tobias Lapp, der einen Großteil der Experimente vornahm. In einem Behälter, der oben mit einer durchsichtigen Folie verschlossen ist, erhitzen die Forscher Wasser unter genau kontrollierten Bedingungen. Eine Kamera, die oberhalb der Folie angebracht ist, erzeugt sechsmal pro Sekunde eine Momentaufnahme des Tröpfchenmusters. Mit speziell entwickelten Computerprogrammen lassen sich die Aufnahmen dann auswerten. „Dafür muss jeder Tropfen als solcher erkannt und einer bestimmten Größenklasse zugeordnet werden“, so Lapp.

Zweites Standbein der Studie sind numerische Simulationen. „Am Rechner lässt sich gut nachvollziehen, wie sich Feuchtigkeit auf einer Oberfläche niederschlägt“, erklärt Vollmer. „Und zwar Tröpfchen für Tröpfchen.“ In den Simulationen trifft das Wasser gleichmäßig auf eine Fläche und bilden dort zunächst winzige Tröpfchen, die durch den weiteren Niederschlag von Wasser allmählich wachsen. Immer wieder kommt es dabei zu Zusammenstößen, bei denen sich mehrere kleinere zu einem großen Tröpfchen zusammenfinden. „Um den Wachstumsprozess genau zu verfolgen, müssen wir gleichermaßen sowohl die winzigen jungen Tropfen, als auch die deutlich älteren großen numerisch im Blick haben“, erklärt Johannes Blaschke, der die Simulationen in seiner Master-Arbeit entwickelte und durchführte, die Schwierigkeit der Methode. Zudem war es nötig, über mehrere hundert Simulationen zu mitteln. „Einen solchen numerischen Aufwand hat bei dieser Fragestellung bisher noch niemand betrieben.“

Der Lohn der aufwändigen Tröpfchenzählerei: Die Forscher konnten sowohl in der sehr frühen, als auch in der sehr späten Wachstumsphase einen deutlichen Wachstumsknick identifizieren. „Das Potenzgesetz ist somit nicht mehr haltbar“, bilanziert Vollmer und ergänzt: „In den Experimenten finden sich mehr Ausnahmen als Kandidaten, die der Regel folgen.“

Auch um das neue Ergebnis zu erklären, muss man das Tröpfchenwachsen ganz genau betrachten. Grundsätzlich gibt es drei Mechanismen, durch welche sich ein bestehendes Tröpfchen vergrößern kann: Zwei etwa gleichgroße Tropfen können verschmelzen, ein kleines Tröpfchen kann sich bis zum Rand eines deutlich größeren ausdehnen und dann geschluckt werden oder die Tröpfchen wachsen durch den Niederschlag. Am Anfang sind die Tröpfchen noch sehr weit verteilt und sammeln deshalb den Niederschlag besonders effizient ein: Auch das Wasser, das zunächst in ihrer Nachbarschaft landet, wandert über die Oberfläche zu ihnen. Gegen Ende des Wachstumsprozesses existieren bereits so viele Tropfen, dass die Nachbarn solche „indirekten Treffer“ aufnehmen. Die besonders großen Tropfen hingegen, treffen kaum noch auf größere, von denen sie geschluckt werden – ihr Wachstum verlangsamt sich somit drastisch.

Die Ergebnisse der Forscher könnten in Zukunft auch technischen Anwendungen zu Gute kommen, die auf die speziellen Eigenschaften von Tropfen setzen. Da sie effektiv Wärme aufnehmen können, sind sie etwa in der Kältetechnik besonders gefragt. Ein besseres Verständnis ihres Entstehungsprozesses kann hier energiesparendere Methoden ermöglichen. Und auch moderne und wassersparende Bewässerungsmethoden leben davon, gezielt Tröpfchen einer bestimmten Größe zu erzeugen – auch dabei könnte eine genaue Kenntnis ihrer Wachstumsphasen helfen.

Ansprechpartner
Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-668
Email: birgit.krummheuer@­ds.mpg.de
Prof. Dr. Jürgen Vollmer
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 0551 5176-210
Email: juergen.vollmer@­ds.mpg.de
Originalveröffentlichung
Johannes Blaschke, Tobias Lapp, Björn Hof und Jürgen Vollmer
Breath Figures: Nucleation, Growth, Coalescence, and the Size Distribution of Droplets
Physical Review Letters 109, 068701 (2012), 10. August 2012
DOI: 10.1103/PhysRevLett.109.068701

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6003154/tautropfen

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Poseidon goes Politics – Wer oder was regiert die Ozeane?

27.02.2017 | Veranstaltungen

Fachtagung Rapid Prototyping 2017 – Innovationen in Entwicklung und Produktion

27.02.2017 | Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Untersuchung: Kontrastmittel sparen mit dem Mini-Teilchenbeschleuniger

27.02.2017 | Medizintechnik

Neue Maßstäbe für eine bessere Wasserqualität in Europa

27.02.2017 | Biowissenschaften Chemie

Wenn der Schmerz keine Worte findet - Künstliche Intelligenz zur automatisierten Schmerzerkennung

27.02.2017 | Medizintechnik