Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Katalysator im Kunststoffmantel schützt „Künstliches Blatt“

17.06.2013
Speicherlösungen für die unregelmäßig verfügbare Solarenergie werden dringend gesucht.

Eine Lösung ist es, die in Solarzellen erzeugte elektrische Energie zu nutzen, um durch Elektrolyse Wasser aufzuspalten und so den Brennstoff Wasserstoff zu erzeugen. Forscher am HZB-Institut für Solare Brennstoffe modifizieren so genannte Superstrat-Solarzellen, die eine sehr effiziente Architektur besitzen, um mit geeigneten Katalysatoren Wasserstoff aus Wasser zu produzieren. Diese Zelle funktioniert wie ein „künstliches Blatt“. Doch im wässrigen Elektrolyten korrodiert die Solarzelle rasch.


Diese komplexe Solarzelle ist mit zwei unterschiedlichen Katalysatoren beschichtet und funktioniert wie ein „künstliches Blatt“: sie nutzt Sonnenlicht, um Wasser aufzuspalten und Wasserstoffgas zu erzeugen. Foto: HZB

Nun hat eine Doktorandin des Teams, Diana Stellmach, als erste Wissenschaftlerin in Europa eine neue Lösung gefunden, um die Korrosion zu verhindern: Sie bettet die Katalysatoren in einen leitfähigen Kunststoff ein und bringt sie dann auf die beiden Kontakte der Solarzelle auf. Damit versiegelt sie die empfindlichen Kontakte der Zelle gegen Korrosion und ermöglicht eine stabile Ausbeute von etwa 3,7 Prozent des Sonnenlichts.

Wasserstoff speichert Energie auf chemische Weise und ist vielseitig einsetzbar. Das Gas kann zu Brennstoffen wie Methan weiterverarbeitet werden oder direkt in Brennstoffzellen Strom erzeugen. Wasserstoff lässt sich durch die elektrolytische Aufspaltung von Wasser in Wasserstoff und Sauerstoff herstellen; dafür sind zwei Elektroden nötig, die mit geeigneten Katalysatoren beschichtet sind und zwischen denen eine Spannung (mindestens 1,23 V) anliegt. Interessant wird die Erzeugung von Wasserstoff aber erst, wenn dafür Solarenergie genutzt werden kann. Denn das würde zwei Probleme auf einmal lösen: An sonnigen Tagen könnte überschüssiger Strom Wasserstoff erzeugen, der dann nachts oder an trüben Tagen als Brennstoff oder zur Stromerzeugung zur Verfügung stünde.
Neue Ansätze mit komplexen Dünnschicht-Silizium-Solarzellen

Am Institut für Solare Brennstoffe des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB) arbeiten Forscher an neuen Ansätzen, um dieses Ziel zu verfolgen: Dafür nutzen sie photovoltaische Strukturen aus mehreren, extrem dünnen Silizium-Schichten, die am Photovoltaik-Kompetenzzentrum-Berlin (PVcomB), einem anderen Institut des HZB, maßgeschneidert gefertigt werden. Weil die Zelle aus einem einzigen – wenn auch komplex aufgebauten – „Block“ besteht, spricht man von einem monolithischen Ansatz. Die elektrischen Kontaktflächen der Zelle werden im Institut für Solare Brennstoffe mit speziellen Katalysatoren für die Wasserspaltung beschichtet. Wird diese Zelle in verdünnte Schwefelsäure eingetaucht und mit sonnenähnlichem Licht bestrahlt, entsteht an den Kontakten eine Spannung, die für die Aufspaltung von Wasser genutzt werden kann. Elementar wichtig sind in diesem Prozess die Katalysatoren, die die Reaktionen an den Kontakten beschleunigen.

Neue Lösung verhindert Korrosion

Der Vorteil der photovoltaischen Zellen des PVcomB ist deren „Superstrat- Architektur“: Das Licht fällt durch den transparenten Frontkontakt ein, der auf dem Trägerglas abgeschieden ist; es gibt keine Verschattung durch aufgebrachte Katalysatoren. Die Katalysatoren befinden sich nämlich auf der Rückseite der Solarzelle und sind im Kontakt mit dem Wasser/Säuregemisch. Dieses ist sehr angriffslustig, das heißt korrosiv, so dass Diana Stellmach im ersten Schritt den üblichen Zinnoxid-Silber-Rückkontakt durch eine Beschichtung mit Titan von etwa 400 Nanometern Dicke ersetzen musste. Im zweiten Schritt entwickelte sie eine Lösung, um mit dem Aufbringen des Katalysators gleichzeitig die Zelle gegen Korrosion zu schützen: Sie mischte RuO2-Nanoteilchen in ein leitfähiges Polymer (PEDOT:PSS) und trug diese Mischung als Katalysator für die Sauerstoffbildung auf dem Rückseitenkontakt der Zelle auf. Auf den Frontkontakt wurden in analoger Weise Platin Nanoteilchen aufgebracht, an denen die Wasserstoffentwicklung abläuft.

Erstmals stabile Produktionsraten
Insgesamt erzielte die Konfiguration einen Wirkungsgrad von 3,7 % und war über mindestens 18 Stunden stabil. „Damit ist Frau Stellmach die erste Wissenschaftlerin in Europa, die eine solche wasserspaltende Solarzellenstruktur realisiert hat“, erklärt Prof. Dr. Sebastian Fiechter. Vielleicht sogar weltweit, denn anders aufgebaute Photovoltaikmembranen erwiesen sich als weniger stabil. Allerdings müssen die teuren Katalysatoren wie Platin und RuO2 langfristig noch durch preiswertere Stoffe ersetzt werden. Auch daran arbeitet Diana Stellmach bereits; sie entwickelt nun Kohlenstoff-Nanoröhren, die mit Molybdän-Sulfid-Schichten ummantelt sind und als Katalysatoren für die Wasserstoffentwicklung dienen.

Weitere Informationen:

Prof. Sebastian Fiechter
Institut Solare Brennstoffe
Tel.: +49 (0)30-8062-42927
fiechter@helmholtz-berlin.de

Diana Stellmach
Institut Solare Brennstoffe
Tel.: +49 (0)30-8062-42323
diana.stellmach@helmholtz-berlin.de

Pressestelle des HZB
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtz-berlin.de

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie