Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Iridiumhydrid: Neues Material speichert ungewöhnlich viel Wasserstoff

20.11.2013
Ein internationales Forscherteam hat ein neues Material erzeugt, das unerwartet viel Wasserstoff speichern kann.

Bei Röntgenmessungen unter extrem hohem Druck haben die Wissenschaftler an DESYs Forschungslichtquelle PETRA III und an anderen Röntgenquellen die Entstehung von zuvor unbekanntem Iridiumhydrid beobachtet, einer Verbindung des Metalls Iridium mit dem Element Wasserstoff.

Das neuartige Material kann bis zu dreimal soviel Wasserstoff speichern wie andere Metallhydride, was etwa für die Entwicklung von Brennstoffzellen mit hoher Kapazität für Autos und für andere Anwendungen interessant sein könnte.

Iridiumhydrid entsteht bei einem Druck von mindestens 55 Gigapascal (GPa), das entspricht dem 550.000-Fachen des mittleren atmosphärischen Luftdrucks. Die Forscher der Universität Edinburgh (Großbritannien), der Universität Oviedo (Spanien) sowie von DESY konnten außerdem zeigen, dass Iridiumhydrid eine unerwartete Kristallstruktur besitzt, die bei keinem anderen bekannten Hydrid auftritt. Da die mechanischen und elektronischen Eigenschaften eines Materials von seiner Struktur abhängen, könnte die neue Struktur zur Entdeckung neuartiger Eigenschaften führen. Die Studie ist im Fachblatt "Physical Review Letters" erschienen.

Chemische Verbindungen von Metallen und Wasserstoff werden Metallhydride genannt und sind vielversprechende Kandidaten für industrielle Wasserstoffspeicher. Wird der Wasserstoff aus dem Hydrid gelöst, steht er beispielsweise zur umweltfreundlichen Stromerzeugung in Brennstoffzellen-Autos zur Verfügung. "Im weiteren Sinne zielt unsere Forschung auf ein tieferes Verständnis, wie sich Metallhydride bilden, und wie sich der Wasserstoff danach wieder extrahieren lässt", erläutert der Erstautor der Studie, Thomas Scheler, ehemaliger Doktorand aus der Gruppe von Eugene Gregoryanz an der Universität Edinburgh.

Eine andere wichtige Anwendung finden viele Metallhydride als sogenannte Supraleiter, das sind Materialien, die den elektrischen Strom unterhalb einer charakteristischen Temperatur vollkommen verlustfrei leiten können. Dieses Verhalten ist beispielsweise bei den Hydriden der Edelmetalle Palladium und Platin beobachtet oder vorhergesagt worden und könnte daher auch bei Hydriden chemisch verwandter Edelmetalle wie Iridium auftreten. Allerdings ist Iridiumhydrid vor dieser Studie niemals beobachtet worden. Daher hatten sich die Forscher daran gemacht, diese Verbindung erstmals herzustellen.

An der Experimentierstation P02, DESYs Extreme Conditions Beamline (ECB) an PETRA III, platzierten die Wissenschaftler ein Stückchen Iridium in eine sogenannte Diamantstempelzelle, mit der sich extrem hohe Drücke erzeugen lassen. Anschließend füllten sie die Zelle mit Wasserstoff und setzten das Metall unter einen Druck von bis zu 125 Gigapascal. Mit PETRAs intensiven, stark gebündelten Röntgenstrahlen durchleuchteten die Forscher die Probe und konnten darin Strukturänderungen bei hohem Druck nachweisen.

"Bei 55 Gigapascal haben wir neue Röntgensignale beobachtet, die nicht von metallischem Iridium stammten, und die mit steigendem Druck immer stärker wurden", erläutert Gregoryanz. Die Forscher schlossen daraus, dass sich tatsächlich Iridiumhydrid geformt hatte.

Allerdings wurden die Röntgensignale des Hydrids teilweise von den Signalen des verbliebenen metallischen Iridiums in der Probe verdeckt. "Wir haben daher die Probe mit Infrarotlasern aufgeheizt, um die Bildung von Iridiumhydrid zu fördern", sagt DESY-Forscherin und Ko-Autorin Zuzana Konôpková. In der laserbeheizten Probe bildete sich das Hydrid viel schneller, ohne Iridiumreste zurückzulassen.

"Die Laserheizung war eine von mehreren Experimentierbedingungen, die für den Erfolg unserer Versuche entscheidend waren", fügt Scheler hinzu. "Die Verfügbarkeit schneller Detektoren und hoher Röntgenenergien an der Station P02 sowie PETRAs extrem stark fokussierter Röntgenstrahl haben ebenfalls dazu beigetragen."

Bei der Datenanalyse bemerkten die Forscher, dass das neu gebildete Iridiumhydrid eine ungewöhnliche innere Struktur besitzt. Normalerweise weitet sich bei der Entstehung eines Metallhydrids die innere Struktur des Metalls, um Wasserstoffatome zwischen den Metallatomen aufnehmen zu können. In diesen Hydriden ist der Wasserstoff nicht an das Metall gebunden, und das Verhältnis von Metall- zu Wasserstoffatomen liegt typischerweise nahe bei 1.

Im Gegensatz dazu wird der Wasserstoff im Iridiumhydrid zum Bestandteil des Kristallgitters und bildet so eine Struktur, die bislang in keinem anderen Metallhydrid beobachtet worden ist. "Unsere Röntgendaten legen nahe, dass die Iridiumatome die Eckplätze eines Würfels besetzen, während der Wasserstoff sich im Zentrum jeder Würfelseite dieses einfachen Würfelgitters befindet", sagt Scheler. In der Folge ist jedes Iridiumatom von jeweils drei Wasserstoffatomen umgeben, was zu der Iridium-Trihydrid-Struktur führt, die bis zu dreimal mehr Wasserstoff aufnehmen kann als die meisten anderen Metallhydride.

Allerdings gelingt die Identifizierung von Iridiumhydrid mit Hilfe der Röntgendaten nur indirekt. "Wasserstoff selbst ist als das leichteste aller Elemente nahezu durchsichtig für Röntgenstrahlung, und wir können seine Position nicht direkt bestimmen", erläutert Konôpková. Die Struktur des Hydrids lässt sich daher nur an den Bewegungen der Iridiumatome ablesen, die von den Wasserstoffatomen ausgelöst wird. Zusätzliche theoretische Berechnungen stützen jedoch die Beobachtung, dass es sich um ein einfaches, allerdings verzerrtes Würfelgitter handelt.

Die jetzt vorgestellte Studie kann für künftige Entwicklungen von Wasserstoffspeicher- und Brennstoffzellen-Techniken von Bedeutung werden. Iridium selbst ist zwar zu selten und zu teuer für Routineanwendungen im industriellen Maßstab, die Herstellung eines ganz neuartigen Iridiumhydridmaterials mit einer neuen inneren Struktur und einem hohen Wasserstoffanteil könnte jedoch die Suche nach anderen Metallhydriden mit hoher Wasserstoffkapazität vorantreiben. Darüber hinaus werden erst Folgestudien die mechanischen und elektronischen Eigenschaften von Iridiumhydrid bestimmen. "Unsere Experimente haben die Materialstruktur enthüllt", sagt Gregoryanz. "Diese Information kann nun zur theoretischen Vorhersage seiner Eigenschaften wie zum Beispiel einer Supraleitfähigkeit genutzt werden."

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
“High-pressure synthesis and characterization of iridium trihydride”; T. Scheler, M. Marqués, Z. Konôpková, C. L. Guillaume, R. T. Howie, and E. Gregoryanz; Phys. Rev. Lett., 2013; DOI: 10.1103/PhysRevLett.111.215503
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v111/i21/e215503 Originalstudie in PRL

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Biotinte für den Druck gewebeähnlicher Strukturen
19.10.2017 | Forschungszentrum Jülich, Jülich Centre for Neutron Science

nachricht Was winzige Strukturen über Materialeigenschaften verraten
19.10.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise