Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hohlkugeln aus Metall

01.10.2009
Metallische geschliffene Hohlkugeln herstellen – kein Problem, mag so mancher denken. De facto gab es diese bisher nur ab einer bestimmten Größe. Forscher haben nun erstmals geschliffene Hohlkugeln hergestellt, die eine Größe von nur zwei bis zehn Millimetern haben.

Neue Antriebstechnologien sowie leichtere und leistungsfähigere Werkstoffe sollen dafür sorgen, dass Flugzeuge und Kraftfahrzeuge treibstoffsparender vorankommen. Oft jedoch liegt die Lösung im Detail.

Beispielsweise bei Magnetkugelventilen: Sollen sie extrem schnell reagieren, müssen die enthaltenen Kugeln möglichst leicht sein – ebenso bei sehr schnell bewegten Lagern. Eine mögliche Lösung: Hohlkugeln aus Stahl.

Forscher des Fraunhofer-Instituts für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden und der hollomet GmbH Dresden haben nun die Grundlage gelegt für schnell reagierende Kugelventile und -lager. »Beim Einspritzventil sorgt eine Kugel dafür, dass sich das Ventil öffnet und schließt. Je leichter die Kugel, desto schneller lässt sie sich bewegen«, sagt Dr.-Ing. Hartmut Göhler, Projektleiter am IFAM. Bisher konnte man Kugeln in diesen Größen nur massiv herstellen.

Die massive Kugel ist jedoch verhältnismäßig schwer und reagiert in einem Kugelventil daher langsam. »Wir konnten erstmals metallische Hohlkugeln mit dem passenden Durchmesser von nur zwei bis zehn Millimeter herstellen. Die hohlen Kugeln sind um 40 bis 70 Prozent leichter als massive.« Als Ausgangsstoff dienen Styropor-kugeln. In einem Wirbelbettverfahren pustet ein Luftstrom die Kugeln hoch und hält sie in der Schwebe, während von oben eine Suspension aus Metallpulver und Binder daraufgesprüht wird. Ist die Metallschicht auf den Kugeln dick genug, folgt eine Wärmebehandlung: In einem ersten Schritt verdampfen dabei alle organischen Bestandteile, das Styropor und der Binder.

Die Reststoffe sind gasförmig und entweichen durch die Poren in der Metallschicht. Zurück bleibt eine zerbrechliche Kugel aus Metall. Diese wird nun knapp unterhalb der Schmelztemperatur gesintert. Die Metallpulverkörnchen verbinden sich dabei, die Schale wird fest und dicht. Die Kugel ist nun stabil genug, um in einer Schleifmaschine geschliffen zu werden. Der Druck darf dabei nicht zu hoch sein, sonst verformt sich die hohle Kugel. Die Wandstärke kann auf Dicken zwischen einigen Zehntelmillimetern und einem Millimeter eingestellt werden.

Anwendungen sieht Göhler überall dort, wo eine geringe Massenträgheit gefordert ist. »Durch die Hohlkugeln ergeben sich sicherlich auch noch einige Anwendungen, die bisher nicht zu realisieren waren«, ist sich Göhler sicher. Geschliffene Kugeln aus Stahl haben die Wissenschaftler bereits realisiert, andere Metalle wie Titan und verschiedene Legierungen sind für die Zukunft vorgesehen.

Dr.-Ing. Hartmut Göhler | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2009/10/hohlkugeln-aus-metall.jsp

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise