Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hart oder weich – beides zugleich: Neues Nanomaterial wechselt Eigenschaft nach Bedarf

03.06.2011
Das hat die Welt noch nicht gesehen: Ein Werkstoff, der quasi auf Knopfdruck seine Festigkeit ändert.

Dieser Wandel in Sekundenschnelle kann durch Änderungen der Elektronenstruktur eines Materials erreicht und so zum Beispiel aus einem festen und spröden Stoff ein weicher und formbarer werden. Den entscheidenden Impuls liefern elektrische Signale, Clou dieser sensationellen Entwicklung. Die Weltneuheit kommt aus Hamburg: Der Werkstoffwissenschaftler Jörg Weißmüller von der TU Hamburg, in Personalunion Wissenschaftler am Helmholtz-Zentrum Geesthacht, hat gemeinsam mit Kollegen des Metallforschungsinstituts in Shenyang, China an dieser bahnbrechenden Entwicklung geforscht.

„Das ist ein Durchbruch in den Materialwissenschaften“, sagte der 51-jährige Saarländer über seine grundlegende Forschung, die die Tür zu den vielfältigsten Anwendungen öffnet. In der aktuellen Ausgabe der renommierten Fachzeitschrift “Science" (DOI: 10.1126/science.1202190 ) beschreiben Prof. Dr. Jörg Weißmüller und der chinesische Forscher Hai-Jun Jin das neue metallische Hochleistungsmaterial. Die Erkenntnisse könnten in Zukunft intelligente Materialien möglich machen, die zum Beispiel Risse im Blech selbstständig verschließen.

Beim Eierkochen kann man frei entscheiden – je nach Kochzeit wird das Ei hart oder es bleibt weich. Einige Entscheidungen sind jedoch unwiderruflich – ein hartes Ei wird nie wieder weich. Weniger Ärger am Frühstückstisch gäbe es, wenn man einfach zwischen den verschiedenen Eigenschaften des Eies hin- und herschalten könnte. Genau wie beim Eierkochen wird in der Herstellung metallischer Konstruktionswerkstoffe das Eigenschaftsprofil ein für allemal festgelegt. Deshalb müssen Ingenieure bei den mechanischen Eigenschaften eines Materials Kompromisse eingehen: So geht beispielsweise mit einer hohen Festigkeit zwangsläufig auch eine erhöhte Sprödigkeit und damit eine verringerte Schadenstoleranz einher. „An dieser Stelle zeichnet sich nun ein erheblicher Fortschritt ab“, sagt Weißmüller, Leiter des Instituts für Werkstoffphysik und Werkstofftechnologie an der TU Hamburg und der Abteilung Hybride Materialsysteme am Helmholtz-Zentrum Geesthacht. „Wir haben zum ersten Mal ein Material erzeugt, das beim Gebrauch zwischen den mechanischen Eigenschaften fest und spröde sowie weich und formbar hin- und herschalten kann. Noch stecken wir mitten in der Grundlagenforschung, doch unsere Entdeckung wird die Entwicklung so genannter smart materials, also intelligenter Materialien, voranbringen.“

Hochzeit von Metall und Wasser
Zur Herstellung dieses zukunftweisenden Materials benutzt der Werkstoffwissenschaftler einen vergleichsweise einfachen Vorgang: die Korrosion. Die Metalle, in der Regel Edelmetalle wie Gold oder Platin, werden in eine säurehaltige Lösung gegeben. In Folge des einsetzenden Korrosionsprozesses bilden sich winzigste Gänge und Löcher im Metall. So bildet sich ein nanostrukturiertes Material mit einem Netzwerk von Porenkanälen. In diesen Poren wird eine leitfähige Flüssigkeit eingebracht, zum Beispiel eine Kochsalzlösung oder eine verdünne Säure. Dadurch entsteht ein echtes Hybridmaterial aus Metall und Flüssigkeit. Erst diese ungewöhnliche „Hochzeit“, wie Weißmüller die Verbindung aus Metall und Wasser nennt, macht den durch ein elektrisches Signal ausgelösten Wechsel der Materialeigenschaften auf Knopfdruck möglich.

Da in der Flüssigkeit Ionen gelöst sind, können die Grenzflächen des Metalls elektrisch aufgeladen werden. Anders ausgedrückt: Die mechanischen Eigenschaften des metallischen Partners werden durch Anlegen einer elektrischen Spannung im flüssigen Partner verändert. Dahinter steht eine Modifikation, eine Stärkung oder Schwächung der atomaren Bindungen in der Oberfläche des Metalls als Folge des Einbaus zusätzlicher Elektronen. Bei Bedarf läßt sich so die Festigkeit des Materials verdoppeln oder aber ein weniger fester, dafür aber plastisch formbarer Zustand einstellen.

Noch liegen konkrete Anwendungen in der Zukunft. Die Forscher denken jedoch bereits weiter: Prinzipiell kann das Material elektrische Signale selbstständig erzeugen, und so gezielt in Bereichen mit hoher Belastung eine lokale Verfestigung einstellen. Damit ließen sich Schädigungen durch Risse verhindern oder gar ausheilen. Damit sind die Wissenschaftler dem Ziel ‚intelligenter’ Hochleistungsmaterialien ein großes Stück näher gekommen.

Die Original-Veröffentlichung:
A material with electrically tunable strength and flow stress (DOI: 10.1126/science.1202190)

Jutta Katharina Werner | idw
Weitere Informationen:
http://www.tu-harburg.de/wp/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise