Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Halbleiter aus Kunststoff besser verstehen

29.07.2010
Neue Methode erlaubt aufschlussreiche Einblicke in Polymer-Halbleiter
Halbleiter aus Polymermaterialien dürften in Zukunft immer mehr Bedeutung für die Elektronikindustrie bekommen – etwa als Grundlage von Transistoren, Solarzellen oder Leuchtdioden.

Denn sie haben wesentliche Vorteile gegenüber konventionellen Materialien: Sie sind leicht, flexibel und können kostengünstig produziert werden. Meist bestehen sie nicht aus einer einzelnen Substanz, weil sich ihre besonderen elektrischen Eigenschaften oft erst dann ergeben, wenn man mehrere verschiedene Polymere miteinander mischt.

Um dabei das optimale Material zu finden, muss man wissen, wie sich die einzelnen Polymere verbinden (und ob sie es tun) und wie die einzelnen Komponenten zu den Eigenschaften des Gesamtmaterials beitragen. Nun haben Forschende des Paul Scherrer Instituts und der Universität Cambridge (Grossbritannien) ein Verfahren entwickelt, mit dem sie den detaillierten Aufbau des Materials sowohl im Inneren als auch an der Oberfläche bestimmen können. Die Untersuchungen wurden an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts durchgeführt.

Halbleitermaterialien bilden die Grundlage der meisten elektronischen Bauteile. Während man sich bislang unter Halbleitern zerbrechliche Materialien wie Silizium vorstellen musste, könnten bald neue Materialien die Welt der Elektronik erobern – Halbleiter aus konjugierten Polymermaterialien, also speziellen Kunststoffen, die elektrischen Strom leiten können. Elektronische Bauteile aus diesen Materialien werden in der Regel nicht aus einem einzelnen Kunststoff bestehen, sondern aus einer Mischung. „Oftmals kann man in einem Gemisch von Polymeren Materialeigenschaften erreichen, die in einem einzelnen Polymer nicht möglich sind“, erklärt Chris McNeill von der Universität Cambridge. „So ist die Effizienz von Solarzellen oder Leuchtdioden, die aus Gemischen bestehen, deutlich höher als von solchen aus Einzelmaterialien.“ Benjamin Watts vom Paul Scherrer Institut fügt hinzu: „Elektronische Bauteile aus Polymergemischen herzustellen, ist ausgesprochen schwierig. Zum einen wissen wir nicht, wie die Materialien funktionieren, zum anderen ist es schwierig die Strukturen zu sehen, die sich in einem Polymergemisch bilden, weil die Bestandteile alle sehr ähnlich aussehen.“

„Wir können Polymere unterscheiden, die nahezu identisch erscheinen“

McNeill und Watts haben eine Methode entwickelt, mit der sie in einem Polymergemisch die einzelnen Substanzen unterscheiden können, und zwar sowohl im Inneren als auch an der Oberfläche. „Das ist sehr wichtig für elektronische Bauteile auf Grundlage von Polymerhalbleitern, weil die eigentliche „Arbeit“ im Inneren des Bauteils getan wird, das Bauteil aber über die Oberfläche mit anderen Bauteilen und damit dem Rest der Welt verbunden ist“, erklären die Forscher.

Ihre Untersuchungen haben die Forschenden mit Synchrotronlicht an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts in der Schweiz durchgeführt. Synchrotronlicht ist Röntgenlicht, das von schnellen Elektronen abgestrahlt wird, die auf eine gekrümmte Bahn gezwungen werden. Es ist viel brillanter als Röntgenlicht, das von einer gewöhnlichen Röntgenröhre erzeugt wird. In der SLS wird das Licht von Elektronen erzeugt, die sich mit fast Lichtgeschwindigkeit auf einer Kreisbahn mit einem Umfang von 288 Metern bewegen. In ihrem Experiment nutzen die Forschenden unter anderem aus, dass man die Energie, also gewissermassen die Farbe des Synchrotronlichts, sehr genau einstellen kann. „Wir beleuchten unsere Probe mit Licht, das genau auf die Kohlenstoffatome abgestimmt ist. Das heisst, Materialien die Kohlenstoff enthalten, wie etwa Polymere, absorbieren besonders viel von diesem Licht. Bei genau welcher Energie ein Kohlenstoffatom das Licht absorbiert, hängt davon ab, wie es mit anderen Atomen verbunden ist. So haben Substanzen mit unterschiedlicher molekularer Struktur gewissermassen verschiedene Farben. So kann man mit dem Synchrotronlicht Polymermaterialien unterscheiden, die sonst nahezu identisch aussehen würden“, erklärt Watts.

Oberfläche und Innenleben gleichzeitig untersuchen

„Je nachdem, ob wir die Oberfläche oder das Innere der Probe untersuchen, nutzen wir zwei verschiedene Wege, um zu sehen, wie das Licht mit dem Material wechselwirkt. Um den Aufbau des Inneren zu sehen, haben wir das Material einfach „durchleuchtet“ und geschaut, welche „Farben“ des Synchrotronlichts durchscheinen“, fügt Watts hinzu. „Um die Oberfläche zu untersuchen, wandten wir einen etwas schwierigeren Trick an: Ein Atom, das Licht absorbiert, will die gewonnene Energie nicht behalten, sondern wird sie wieder los, indem es eines seiner Elektronen abstösst. Im Inneren wird sich ein solches Elektron möglichst schnell einem neuen Atom anschliessen. Direkt an der Oberfläche kann das Elektron aber nur aus der Probe entfliehen. Diese Elektronen, die aus der Oberfläche kommen, können wir beobachten und so nachweisen, bei welcher Energie das Synchrotronlicht in der Oberfläche absorbiert wird.“

Von Handy-Displays und Solarzellen

Nach der praktischen Bedeutung seiner Arbeit für den Einzelnen gefragt, sagt Watts: „Schon heute verwendet man elektronische Bauteile aus Kunststoff, zum Beispiel Handy-Displays. Unser Verfahren könnte helfen, diese Bauteile effizienter zu machen – sie wären also heller und würden weniger Strom verbrauchen.“ McNeill fügt hinzu: „Unserer Arbeit könnte auch dazu beitragen, dass etwa organische Solarzellen Marktreife erreichen. Und allgemein kann das Verfahren allen nützen, die sich mit Kunststoffen befassen.“

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt:
Dr. Benjamin Watts, Labor für Kondensierte Materie, Bereich Synchrotronstrahlung und Nanotechnologie, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz, E-Mail: benjamin.watts@psi.ch, +41(0)56 310 5516 (Englisch)

Dr. Christiopher R. McNeill, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, Grossbritannien, E-Mail: crm51@cam.ac.uk; Telefon: +44 (0)1223 337287 (Englisch)

Dr. Jörg Raabe, Labor für Kondensierte Materie, Bereich Synchrotronstrahlung und Nanotechnologie, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz, E-Mail: joerg.raabe@psi.ch, Telefon: +41(0)56 310 5193 (Deutsch, Englisch)

Originalveröffentlichung:
Simultaneous Surface and Bulk Imaging of Polymer Blends with X-ray Spectromicroscopy; Benjamin Watts, Christopher R. McNeill; Macromolecular Rapid Communications, 2010, DOI: 10.1002/marc.201000269

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie