Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haftung auf Anti-Haft

24.08.2012
Neue Technik zur Polymerverknüpfung mit Nanokristallen aus Kiel
Haben Sie schon einmal im Bad Farbe über Silikon gestrichen? Nach wenigen Stunden fällt die Farbe ab. Ärgerlich. Silikon ist ein typisches Antihaftmaterial mit sehr niedriger Oberflächenspannung, das man nicht nur als Fugenmaterial, sondern zum Beispiel auch als flexible Kuchenform kennt. Ähnlich beschaffen ist Teflon, bekannt als Bratpfannenbeschichtung. Beide Materialien sind synthetisch hergestellte Kunststoffe, sogenannte Polymere.

Ein interdisziplinäres Forschungsteam der Christian-Albrechts-Universität zu Kiel (CAU) hat nun eine neue Technologie entwickelt, mit der die beiden Antihaftmaterialien erstmals aufeinander haften. Dabei verwenden sie Nano-Kristalle als Heftklammern. Die Nano-Heftklammern eröffnen Lösungen für eine Vielzahl technischer Herausforderungen, zum Beispiel in der Medizintechnik. Die von der Deutschen Forschungsgemeinschaft im Sonderforschungsbereich 677 „Funktion durch Schalten“ finanzierte Arbeit wurde heute (Freitag, 24. August) im Fachjournal Advanced Materials veröffentlicht.

Eine neue Technologie
„Wenn die Nano-Heftklammern solch extreme Antihaftpolymere wie Teflon und Silikon miteinander verbinden können, dann halten mit ihnen auch alle möglichen anderen Kunststoffe aneinander“, sagt Professor Rainer Adelung. Adelung ist Leiter der Forschungsgruppe „Funktionale Nanomaterialien“ am Institut für Materialwissenschaft der CAU und betreute das Heftklammerprojekt vonseiten der Materialwissenschaften. Die neue Beschichtungstechnik verzichtet auf chemische Klebstoffe und kann laut Adelung in zahlreichen Alltags- und Hightechanwendungen nützlich sein. Darüber hinaus ist die Technik einfach anzuwenden und bedarf keiner teuren Spezialausstattung oder -materialien.

Mikroskopische Heftklammern
Die Heftklammern sind Kristalle aus Zinkoxid mit einer Größe von mehreren Nano- bis wenigen Mikrometern, also wenige Tausendstel- bis Millionstelmillimeter klein. Sie haben die Form von Tetrapoden, vier starren Armen, die von einem zentralen Punkt ausgehen. Größere Tetrapoden von mehreren Metern kennt man als Wellenbrecher zum Küstenschutz von Sylt oder Helgoland, wo sich die Arme ineinander verhaken und so den Kräften der Meeresströmungen trotzen.

Von innen tackern
Beim Aneinanderfügen der Polymere werden zunächst Zinkoxidkristalle gleichmäßig auf einer erwärmten Teflonschicht verteilt. Darüber wird eine Silikonschicht aufgebracht. Um die beiden Materialien zu verbinden, werden sie für weniger als eine Stunde auf etwa einhundert Grad Celsius erwärmt. „Wir tackern sozusagen die beiden Antihaftmaterialien von innen aneinander“, erklärt Xin Jin, die Erstautorin der Studie ist und derzeit in Kiel für ihre Doktorarbeit forscht. Ihr Kollege und Betreuer Doktor Yogendra Kumar Mishra erklärt das Haftprinzip: „Wenn man an einem herausstehenden Arm des Tetrapoden zieht, graben sich die übrigen drei Arme tiefer in das Material, so dass der Tetrapode umso fester im Material sitzt.“

Tackern ist besser als kleben
In Hightechbereichen wie der Medizintechnik gibt es eine große Nachfrage nach innovativen Methoden, insbesondere Silikon auf anderen Materialien zu befestigen, zum Beispiel bei modernen Atemmasken, Implantaten oder auch kleinen Sensoren. Für derartige medizinische Anwendungen werden Verfahren benötigt, die gesundheitlich absolut unbedenklich, also biokompatibel sind. Viele Technologien nutzen chemische Reaktionen: Die Materialien werden aneinander geklebt. Doch die chemischen Prozesse können auch die Polymere verändern und sie im ungünstigsten Falle sogar giftig machen. Die Tetrapoden-Heftklammern hingegen sind eine rein mechanische Verknüpfungstechnik, so dass das Kieler Forschungsteam davon ausgeht, dass sie biokompatibel sind.

So fest wie Klebeband
Mit den Nanoklammern hält die Teflon-Silikonverbindung einer Kraft von 200 Newton pro Meter stand. Das entspricht etwa dem Abziehen von herkömmlichem Klebeband von einer Glasoberfläche. „Diese Haftwirkung der Nanotetrapoden ist erstaunlich, wenn man bedenkt, dass – soweit wir in Erfahrung bringen konnten – bislang niemand Teflon und Silikon überhaupt zum Haften aneinander bringen konnte“, sagt Lars Heepe, Doktorand am Zoologischen Institut der CAU, der die Haftkraft präzise vermessen und die Heftklammern mikroskopisch analysiert hat.

Eine fächerübergreifende Gemeinschaftsarbeit
Drei Forschungsgruppen verknüpften ihre Expertise in Materialwissenschaften, Chemie und Biomechanik in dieser Studie im Rahmen des SFB 677. Für Rainer Adelung sowie seine Kolleginnen und Kollegen geht es nun weiter: „Unsere Ergebnisse fließen direkt in praktische Anwendungsprojekte und in die aktuelle Grundlagenforschung ein.“ So arbeitet der lokale Wirtschaftspartner nanoproofed GmbH bereits an einem Farbprodukt zum Streichen auf Silikon. Im Sonderforschungsbereich sollen die Nanoklammern ferner Grundlage für die Entwicklung biomimetischer Klebstoffe sein, deren Haftwirkung sich mithilfe von Licht an und ausschalten lassen.

Originalpublikation:
X. Jin, J. Strueben, L. Heepe, A. Kovalev, Y.K. Mishra, R. Adelung, S.N. Gorb, A. Staubitz (2012): Joining the un-joinable: Adhesion between low surface energy polymers using tetrapodal ZnO linkers. Advanced Materials, DOI: 10.1002/adma201201780,
Weitere Informationen:
Link zur Publikation:
http://onlinelibrary.wiley.com/doi/10.1002/adma.201201780/abstract
Webseite des Sonderforschungsbereiches 677:
http://www.sfb677.uni-kiel.de

Folgende Bilder stehen zum Download bereit:

http://www.uni-kiel.de/download/pm/2012/2012-237-1.jpg
Bildunterschrift: Jeder der Zinkoxidkristalle hat die Form eines Tetrapoden mit vier Armen. Rasterelektronenmikroskopische Aufnahme.
Copyright: CAU, Image: Xin Jin

http://www.uni-kiel.de/download/pm/2012/2012-237-2.jpg
Bildunterschrift: Die Arme der Tetrapoden-Heftklammern verhaken sich ineinander und bilden so einen festen Verbund. Rasterelektronenmikroskopische Aufnahme.
Copyright: CAU, Image: Xin Jin

http://www.uni-kiel.de/download/pm/2012/2012-237-3.jpg
Bildunterschrift: Die Tetrapoden sinken in den Kunststoff, doch die Arme ragen heraus und fungieren als Haken.
Copyright: CAU, Image: Xin Jin

http://www.uni-kiel.de/download/pm/2012/2012-237-4.jpg
Bildunterschrift: Zwei Kunststoffschichten werden von den tetrapodenförmigen Nano-Heftklammern von innen aneinander getackert. Konzeptzeichnung.
Copyright: CAU, Image: Jan Strüben

http://www.uni-kiel.de/download/pm/2012/2012-237-5.jpg
Bildunterschrift: Teflon und Silikon: Ein Kieler Team lässt beide synthetischen Kunststoffe aneinander haften.
Copyright: CAU, Image: Claudia Eulitz

Kontakt:
Prof. Rainer Adelung
Institut für Materialwissenschaft
E-Mail: ra@tf.uni-kiel.de

Dr. Boris Pawlowski | idw
Weitere Informationen:
http://www.uni-kiel.de/aktuell/pm/2012/2012-237-unjoinable-sfb677.shtml

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise