Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gedächtnistraining für Metallstrukturen

26.01.2011
Strukturierte Oberflächen besitzen besondere Eigenschaften. Wünschenswert wäre es, diese Eigenschaften schaltbar zu machen. Dadurch ließen sich zum Beispiel Reibung und Haftung auf metallischen Oberflächen gezielt an- und ausschalten. Wie man strukturierte Oberflächen dafür trainiert, untersucht die Juniorforschungsgruppe „Metallische Mikrostrukturen“ am INM - Leibniz-Institut für Neue Materialien seit Januar 2011.

Einige Materialien, sogenannte Formgedächtnislegierungen, verändern bei einer Temperaturerhöhung ihre Form. Die Metalle haben sozusagen ein Gedächtnis dafür, in welche Form sie sich bei höherer Temperatur begeben. „Allerdings ist diese Formänderung nicht rückgängig zu machen – einen Schalter erhält man mit diesem Ein-Wege-Effekt noch nicht“, erklärte Andreas Schneider, der Leiter der neuen Gruppe. „Dazu müssen wir das Material trainieren. Das gelingt mit einer geeigneten Kombination aus Wärmebehandlung und Verformung.“


Mit dem Rasterionenmikroskop hergestellte Kupfer-Zink Mikrosäulen. INM

Dann merkt sich das Material die Form bei der höheren und bei der niedrigeren Temperatur. Dieser Zwei-Wege-Gedächtnis-Effekt ermöglicht es, über die Temperatur Oberflächenstrukturen schaltbar zu machen. Damit lassen sich zum Beispiel Reibung und Haftung auf Oberflächen gezielt an- und ausschalten.

Im zweiten Forschungsschwerpunkt untersucht die Gruppe, wie Mikrostrukturen die Belastbarkeit einer Metalloberfläche beeinflussen. „Wir erkennen, dass ein Metall umso belastbarer wird, je kleiner wir die Struktur auf der Oberfläche machen. Viele dünne Säulen tragen ein Tempeldach besser als wenige dicke Säulen“, erklärt der Juniorforscher. Die Arbeitsgruppe untersucht, welche Einflüsse zu diesem Effekt führen und ihn verändern.

Die Mikrostrukturen erzeugen die Wissenschaftler unter anderem mit einem Rasterionenmikroskop. Damit werden Schicht um Schicht kleinste Mengen Metall von der Oberfläche abgetragen. Am Ende ragen Mikrosäulen mit einem festen Durchmesser und einer festen Höhe aus dem Metall heraus. Mit einem Stempel, der von oben auf die Säulen drückt, testen die Wissenschaftler, welchen Kräften die Säulen standhalten, bevor sie nachgeben.

Als Materialien verwendet die Gruppe Metalle mit einer bestimmten kristallographischen Struktur. Die bereits untersuchten Metalle Niob, Wolfram, Tantal und Molybdän verfügen beispielsweise über eine kubisch raumzentrierte Struktur. Auch Materialien, die mit Oxidteilchen verstärkt sind, untersucht die Forschungsgruppe. Es ist bekannt, dass diese Oxidteilchen Metalle belastbarer machen. Die Gruppe untersucht, ob sich dieser Effekt auch im Nano-Mikro-Maßstab bestätigt.

Hintergrund:

Andreas Schneider studierte Materialwissenschaft an der Universität Stuttgart und am Max-Planck-Institut für Metallforschung. Er promovierte mit Auszeichnungbei Eduard Arzt in Stuttgart im Jahr 2010. Schneider erzielte hervorragende Forschungsergebnisse, die sich in zahlreichen Publikationen niederschlagen. Seine exzellente Arbeit bekräftigte den Entschluss der Geschäftsführung, den Nachwuchswissenschaftler als Leiter einer eigenen Juniorforschungsgruppe weiter zu fördern.

Das INM erweitert durch die neue Juniorforschungsgruppe sein Forschungsspektrum hin zum Material Metall. Auch die mechanische Charakterisierung auf der Nano- und Mikro-Skala treibt das INM durch die neue Gruppe voran. Dadurch schlägt es die Brücke von mechanischen Messungen auf atomarer Ebene über die Nano-Skala bis hin zu makroskopischen Größen. Das INM wendet dieses Messverfahren neben Metallen auch auf biologische Materialien an, wie z.B. Perlmutt.

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken betreibt grundlagen- und anwendungsorientierte Materialforschung – vom Molekül bis zur Pilotfertigung. Die Arbeit des INM umfasst in interdisziplinärer Zusammenarbeit die Bereiche Chemische Nanotechnologie, Grenzflächenmaterialien sowie Materialien in der Biologie. Seine Schwerpunkte liegen in der chemischen Synthese und physikalischen Analyse von Oberflächen, von Beschichtungen und von grenzflächenbestimmten Materialien.

Ansprechpartner:
Dr. Andreas Schneider
INM - Leibniz-Institut für Neue Materialien gGmbH
Tel. 0681 9300 312
E-mail: andreas.schneider@inm-gmbh.de

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entschlüsseln, wie Pflanzen ihre Blätter abwerfen

09.12.2016 | Biowissenschaften Chemie

"Wächter des Genoms": Forscher aus Halle liefern neue Einblicke in die Struktur des Proteins p53

09.12.2016 | Biowissenschaften Chemie

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie