Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Galliumnitrid - das neue Material für die Leistungselektronik

09.12.2009
Silizium ist das klassische Material für elektronische Bauteile. Wissenschaftler des Ferdinand-Braun-Instituts entwickeln nun Leistungstransistoren aus Galliumnitrid, die robuster, schneller und effizienter sind.

Leistungstransistoren sind die zentralen Bauelemente in elektrischen Leistungskonvertern, die Gleich- und Wechselstrom umwandeln und auf unterschiedliche Spannungen transformieren können.

In Handyladegeräten sind sie ebenso zu finden wie in der Motoransteuerung eines ICE. Auch in der automobilen Elektronik spielen derartige Leistungskonverter eine entscheidende Rolle. Ihr Wirkungsgrad und ihre Leistungsdichte wird den Erfolg fast aller Green-Car-Konzepte zukünftiger Hybrid- und Elektroautos entscheidend mitbestimmen, denn die Leistungselektronik wird neben dem eigentlichen Elektroantrieb zur Bremsenenergierückgewinnung, für intelligente Batterieladekonzepte und das Bordnetz benötigt. Maßgebliche Entwicklungsimpulse gehen daher inzwischen von der Automobilindustrie aus.

Seit über 50 Jahren ist Silizium der Baustoff dieser Elektronikbauteile. Die Technologie ist mittlerweile jedoch so weit fortgeschritten, dass das Material selbst an seine Grenzen stößt. Bessere Materialeigenschaften verspricht Galliumnitrid (GaN). Im Bereich der Mikrowellentechnik werden bereits Hochfrequenzleistungstransistoren aus Galliumnitrid eingesetzt, zum Beispiel in Mobilfunkbasisstationen.

In einem laufenden und zwei beantragten Projekten will das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH), gemeinsam mit Partnern aus Wissenschaft und Industrie nun neuartige Galliumnitrid-Transistoren für die Leistungselektronik entwickeln. Dabei wird die gesamte Wertschöpfungskette von der Entwicklung bis zum fertigen Produkt abgedeckt. Dr. Oliver Hilt vom FBH beschreibt sein Ziel: "Wir streben effizientere Energieumwandler an, die dann beispielsweise in Hybrid- und Elektroautos, aber auch in Photovoltaik-Anlagen eingesetzt werden."

Galliumnitrid hat gegenüber Silizium einen entscheidenden Vorteil: Es hat einen hohen Bandabstand von 3,4 Elektronenvolt gegenüber 1,1 Elektronenvolt bei Silizium. Dadurch ist es möglich, GaN-Transistoren bei höheren Temperaturen zu betreiben. Der Kühlaufwand sinkt und Gewicht und Baugröße der Leistungskonverter verringern sich. Bei einem Elektroauto zum Beispiel bedeutet dies eine deutliche Energieersparnis. Galliumnitrid hat außerdem eine höhere Durchbruchfeldstärke. Im Vergleich zu einem gleich großen Siliziumtransistor können damit größere Spannungen geschaltet werden. In der Folge treten weniger Leistungsverluste auf. Darüber hinaus sorgt eine hohe Sättigungsgeschwindigkeit der Elektronen für schnellere Schaltgeschwindigkeiten - die Konvertermodule können noch kleiner werden. Die neuen GaN-Leistungstransistoren des FBH werden mehrere 10 Ampere bei Spannungen bis 1000 Volt und mehr schalten. Insgesamt haben Leistungskonverter mit Galliumnitrid-Transistoren einen höheren Wirkungsgrad als jene mit Silizium-Transistoren. Sie sind robuster, schneller und effizienter.

"Ein wichtiges Problem haben wir schon gelöst", sagt Oliver Hilt. In der Leistungselektronik muss der Transistor aus Sicherheitsgründen vollständig ausgeschaltet sein, wenn keine Spannung an der Steuerelektrode anliegt. Einen solchen Transistor nennt man selbstsperrend. Das ist jedoch bei Galliumnitrid-Transistoren üblicherweise nicht der Fall: In der Mikrowellentechnik ist der Transistor bei null Volt Gatespannung immer noch im eingeschalteten Zustand. Man spricht von einem selbstleitenden Transistor. Um diesen Transistor auszuschalten, ist eine negative Gatespannung nötig. Die Einsatzspannung der FBH-Transistoren konnte von minus fünf Volt auf plus ein bis zwei Volt verschoben werden. "Damit sind wir ausreichend weit im positiven Bereich, um die Transistoren in der Leistungselektronik einsetzen zu können", erklärt Oliver Hilt. "Zusätzlich konnten wir den Einschaltwiderstand niedrig halten und damit gehören unsere selbstsperrenden GaN-Transistoren weltweit zu den besten."

Gesine Wiemer | idw
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics